数学教学论文:基于策略:解决实际问题的教学诉求
去想条件,也是一种重要的思考方法。
学生独立完成。
3.师:老师给每人准备一张卡片(注:小兔拔萝卜情境图),卡片上有许多条件,还有问题。你们可以根据条件找相应的问题,也可以根据问题找相应的条件。请小朋友四人一组,找条件与问题。
1白兔拔了10个;2灰兔拔了30个;3白兔拔了2篮,4灰兔拔了3篮,
每篮5个;每篮10个。
问题:两只兔一共拔了多少个?
白兔比灰兔少拔多少个?学生讨论后,汇报。
生1:我们组选①②和“白兔比灰兔少拔多少个?”用30-10=20(个)
生2:我们组选①④和“一共拔多少个?”
师:你们是怎样想的?
生2:根据灰兔拔了3篮,每篮10个,先算出灰兔拔了多少个,再用灰兔拔的个数加上白兔拔的个数。
生3:我们组选③④和“一共拔多少个?”
师:你们是怎样想的?
生2:白兔拔的个数没有告诉,灰兔拔的个数也没有告诉。我们可以先求白兔拔了多少个,再求灰兔拔了多少个,最后把白兔拔的个数和灰兔拔的个数加起来。
[教学分析]
整个练习过程,教师的教学视点并非聚焦在学生解题的正确与否,而是突显对基本策略的体验上。教师通过给学生提供应用策略的广阔背景,让策略与解决问题的实践相随相伴,加深对策略要领的体验,获得对策略情感个体感受。首先,选择与例题相似的“乘加”情境,让学生重温解决问题的过程;接着,设计“乘减”的变式情境,引导学生把例题中的思维方法向新的情境迁移;最后的选择搭配是一项富有挑战性的活动,情境给学生提供较宽的可供选择范围,学生带着前面学习所获得的成功体验,积极参与到自主探索、小组合作学习活动中,个体的数学经验、思维方法得以表征、凝固在活动结果上,学生不仅搭配出用一步、两步计算的实际问题,甚至还搭配出用三步计算的实际问题。而隐藏在学生创造性劳动成果背后的是分析条件之间的内在联系,综合思维方法得以充分历练。
综上,分析和综合是人们认识事物的基本思维过程,是解决问题的基本策略。具有并善于运用这些基本策略对分析问题和解决问题非常有益。让学生掌握分析、综合的思维方法,并内化成解决问题的策略,是一项阶段性工程,绝非一日之功,需要教师结合教学内容作出整体规划。
一是规划各阶段基本策略教学的重点。以苏教版教材为例,教材对两步计算的实际问题,分三段编排。第一阶段,二年级下册结合“两位数乘一位数”教学,安排简单的乘加、乘减问题;第二阶段,三年级上册结合“两位数加、减两位数口算”教学,安排“几倍求和(差)”、“比多(少)求和”的实际问题;第三阶段,结合“三位数乘(除以)一位数”教学,安排连乘(除)实际问题。结合学生的学习心理以及教学内容的实际,第一阶段以综合思维方法作为策略教学的重点;第二阶段以分析思维方法作为策略教学的重点;第三阶段重点是巩固分析、综合两种思维方法。“规划”确立了每一阶段教学的侧重点,使教学内容和目标更加明晰,但又要防止在教学中以一种思维方法限制、束缚学生的僵硬做法,要充分尊重学生的自主选择。上面的教学处理得很好:练习第2题,当生2出现“要求还有多少棵没有浇,就是从小树苗一共的棵数里减去已经浇的棵数,小树苗一共的棵数没有告诉,所以要先算小树苗一共的棵数。”教师及时指出:根据要求的问题去想条件,也是一种重要的思考方法。并且在随后的选择条件与问题搭配的练习中,教师将要求调整为“你们可以根据条件找相应的问题,也可以根据问题找相应的条件。”
二是规划基本策略教学的线索。基本策略的教学应当是有计划、有意识、循序渐进的过程。教学中,应做到:前有渗透——如结合一步计算实际问题教学,引导学生收集信息,提出问题,孕育分析、综合思路的萌芽;结合连续两问的实际问题教学,引导学生体会第一问对第二问的作用,积累原始经验等。中有突破——作为一种基本策略,分析和综合既具有共性的可操作成分,又具有个体的体验成分。这种思维方法的掌握蕴含在解决问题的过程中,落实在解决问题的步骤和方法上。因此,解决实际问题的教学,要引导学生经历解决问题的过程,并通过对解题过程与方法的再认与反思,形成对方法的本质特点、价值及使用要领的主观认识。后有迁移——主动、恰当地选择应用策略思考问题,是形成策略的重要标志。教师可以通过组织学生在复杂的情境中根据条件之间的关系提问题、“一步”与“多步”之间的扩缩练习、自主探索多步计算实际问题等活动,促使学生把已有的学习经验迁移到新的情境中,进一步丰富对基本策略的认识,并加以稳固下来。
<小学数学教师>2010.1 《数学教学论文:基于策略:解决实际问题的教学诉求(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/101310.html
学生独立完成。
3.师:老师给每人准备一张卡片(注:小兔拔萝卜情境图),卡片上有许多条件,还有问题。你们可以根据条件找相应的问题,也可以根据问题找相应的条件。请小朋友四人一组,找条件与问题。
1白兔拔了10个;2灰兔拔了30个;3白兔拔了2篮,4灰兔拔了3篮,
每篮5个;每篮10个。
问题:两只兔一共拔了多少个?
白兔比灰兔少拔多少个?学生讨论后,汇报。
生1:我们组选①②和“白兔比灰兔少拔多少个?”用30-10=20(个)
生2:我们组选①④和“一共拔多少个?”
师:你们是怎样想的?
生2:根据灰兔拔了3篮,每篮10个,先算出灰兔拔了多少个,再用灰兔拔的个数加上白兔拔的个数。
生3:我们组选③④和“一共拔多少个?”
师:你们是怎样想的?
生2:白兔拔的个数没有告诉,灰兔拔的个数也没有告诉。我们可以先求白兔拔了多少个,再求灰兔拔了多少个,最后把白兔拔的个数和灰兔拔的个数加起来。
[教学分析]
整个练习过程,教师的教学视点并非聚焦在学生解题的正确与否,而是突显对基本策略的体验上。教师通过给学生提供应用策略的广阔背景,让策略与解决问题的实践相随相伴,加深对策略要领的体验,获得对策略情感个体感受。首先,选择与例题相似的“乘加”情境,让学生重温解决问题的过程;接着,设计“乘减”的变式情境,引导学生把例题中的思维方法向新的情境迁移;最后的选择搭配是一项富有挑战性的活动,情境给学生提供较宽的可供选择范围,学生带着前面学习所获得的成功体验,积极参与到自主探索、小组合作学习活动中,个体的数学经验、思维方法得以表征、凝固在活动结果上,学生不仅搭配出用一步、两步计算的实际问题,甚至还搭配出用三步计算的实际问题。而隐藏在学生创造性劳动成果背后的是分析条件之间的内在联系,综合思维方法得以充分历练。
综上,分析和综合是人们认识事物的基本思维过程,是解决问题的基本策略。具有并善于运用这些基本策略对分析问题和解决问题非常有益。让学生掌握分析、综合的思维方法,并内化成解决问题的策略,是一项阶段性工程,绝非一日之功,需要教师结合教学内容作出整体规划。
一是规划各阶段基本策略教学的重点。以苏教版教材为例,教材对两步计算的实际问题,分三段编排。第一阶段,二年级下册结合“两位数乘一位数”教学,安排简单的乘加、乘减问题;第二阶段,三年级上册结合“两位数加、减两位数口算”教学,安排“几倍求和(差)”、“比多(少)求和”的实际问题;第三阶段,结合“三位数乘(除以)一位数”教学,安排连乘(除)实际问题。结合学生的学习心理以及教学内容的实际,第一阶段以综合思维方法作为策略教学的重点;第二阶段以分析思维方法作为策略教学的重点;第三阶段重点是巩固分析、综合两种思维方法。“规划”确立了每一阶段教学的侧重点,使教学内容和目标更加明晰,但又要防止在教学中以一种思维方法限制、束缚学生的僵硬做法,要充分尊重学生的自主选择。上面的教学处理得很好:练习第2题,当生2出现“要求还有多少棵没有浇,就是从小树苗一共的棵数里减去已经浇的棵数,小树苗一共的棵数没有告诉,所以要先算小树苗一共的棵数。”教师及时指出:根据要求的问题去想条件,也是一种重要的思考方法。并且在随后的选择条件与问题搭配的练习中,教师将要求调整为“你们可以根据条件找相应的问题,也可以根据问题找相应的条件。”
二是规划基本策略教学的线索。基本策略的教学应当是有计划、有意识、循序渐进的过程。教学中,应做到:前有渗透——如结合一步计算实际问题教学,引导学生收集信息,提出问题,孕育分析、综合思路的萌芽;结合连续两问的实际问题教学,引导学生体会第一问对第二问的作用,积累原始经验等。中有突破——作为一种基本策略,分析和综合既具有共性的可操作成分,又具有个体的体验成分。这种思维方法的掌握蕴含在解决问题的过程中,落实在解决问题的步骤和方法上。因此,解决实际问题的教学,要引导学生经历解决问题的过程,并通过对解题过程与方法的再认与反思,形成对方法的本质特点、价值及使用要领的主观认识。后有迁移——主动、恰当地选择应用策略思考问题,是形成策略的重要标志。教师可以通过组织学生在复杂的情境中根据条件之间的关系提问题、“一步”与“多步”之间的扩缩练习、自主探索多步计算实际问题等活动,促使学生把已有的学习经验迁移到新的情境中,进一步丰富对基本策略的认识,并加以稳固下来。
<小学数学教师>2010.1 《数学教学论文:基于策略:解决实际问题的教学诉求(第3页)》