保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 教学论文 >> 数学论文 >> 正文

求数列通项公式的解题思路


  求数列通项公式的解题思路
  
  广东省高州市第二中学 梁志华
  
  数列既是高中数学的重要内容,也是学习高等数学的基础,因此,每年高考对本章内容均作较全面的考查,而且经常是以综合题、主观题的形式出现,难度较大,不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
  
  一、已知数列的前几项
  
  已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
  
  例1、求数列的通项公式
  
  (1)0,22——1/3,32——1/4,42+1/5……
  
  (2)9,99,999,……
  
  分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
  
  (2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
  
  此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
  
  二、已知数列的前n项和Sn
  
  已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an -{ S1(n=1) Sn -Sn——1(n≥2)
  
  例2、已知数列{an }的前n项和Sn=2n+3,求an
  
  分析:Sn=a1+a2 +……+an——1+an
  
  Sn——1=a1+a2 +……+an——1
  
  上两式相减得 Sn -Sn——1=an
  
  解:当n=1时,a1=S1=5
  
  当n≥2时,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1
  
  ∵n=1不适合上式
  
  ∴an ={5(n=1) 2n——1(n≥2)
  
  三、已知an与Sn关系
  
  已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。
  
  (1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。
  
  例3、已知数列{an},满足a1=3,an=an——1+8,求an。
  
  分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
  
  (2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。
  
  例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)
  
  求数列{an}的通项公式。
  
  分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
  
  解:由an+1=2Sn+1
  
  得an=2Sn-1+1(n≥2)
  
  两式相减,得an+1-an=2an
  
  ∴an+1=3an (n≥2)
  
  ∵a2=2Sn+1=3
  
  ∴a2=3a1
  
  ∴{an}是以1为首项,3为公比的等比数列
  
  ∴an=3n-1
  
  (3)an+1=an+f(n),用叠加法
  
  思路:令n=1,2,3,……,n-1
  
  得a2=a1+f(1)
  
  a3=a2+f(2)
  
  a4=a3+f(3)
  
  ……
  
  +)an=an——1+f(n-1)
  
  an=a1+f(1)+f(2)+…+f(n-1)
  
  例5、若数列{an}满足a1=2,an+1=an+2n
  
  则{an}的通项公式=( )
  
  解:∵an+1=an+2n
  
  ∴a2 =a1+2×1
  
  a3=a2+2×2
  
  a4=a3+2×3
  
  ……
  
  +)an=an——1+2(n-1)
  
  an=a1+2(1+2+3+…+n-1)
  
  =2+2×(1+n-1)(n-1)
  
  =n2-n+2
  
  (4)an+1=f(n)an,用累积法
  
  思路:令n=1,2,3,……,n-1
  
  得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3
  
  ……
  
  ×)an=f(n-1)an-1
  
  an=a1·f(1)·f(2)·f(3)……f(n-1)
  
  例6、若数列{an}满足a1=1,an+1=2n+an,则an=( )
  
  解:∵an+1=2nan ∴a2 =21a1
  
  a3=22a2 a4=23a3
  
  ……
  
  ×) an=2n——1·an——1
  
  an=2·22·23·……·2n-1a1=2n(n-1)/2
  
  (5)an=pan——1+q, an=pan——1+f(n)
  
  an+1=an+p·qn(pq≠0),
  
  an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)
  
  (p、q、r为常数)
  
  这些类型均可用构造法或迭代法。
  
  ①an=pan——1+q (p、q为常数)
  
  构造法:将原数列的各项均加上一个常数,构成一个等比数列,然后,求出该等比数列的通项公式,再还原为所求数列的通项公式。
  
  将关系式两边都加上x
  
  得an+x=Pan——1+q+x
  
  =P(an——1 + q+x/p)
  
  令x=q+x/p,得x=q/p-1
  
  ∴an+q/p-1=P(an——1+q/p-1)
  
  ∴{an+q/p-1}是以a1+q/p-1为首项,P为公比的等比数列。
  
  ∴an+q/p-1=(a1+q/p-1)Pn-1
  
  ∴an=(a1+q/p-1)Pn-1-q/p-1
  
  迭代法:an=p(an——1+q)=p(pan-2+q)+q
  
  =p2((pan-3+q)+pq+q……
  
  例7、数列{an}的前n项和为Sn,且Sn=2an-n(n∈N+)求an
  
  解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)
  
  两式相减得an=2an-1+1
  
  两边加1得an+1=2(an-1+1) (n≥2,n∈N+)
  
  构造成以2为公比的等比数列{an+1}
  
  ②an=Pan-1+f(n)
  
  例8、数列{an}中,a1为常数,且an=-2an-1+3n-1(≥2,n∈N)
  
  证明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5
  
  分析:这道题是证明题,最简单的方法当然是数学归纳法,现用构造法和迭代法来证明。
  
  方法一:构造公比为-2的等比数列{an+λ·3n}
  
  用比较系数法可求得λ=-1/5
  
  方法二:构造等差型数列{an/(-2)n}。由已知两边同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用叠加法处理。
  
  方法三:迭代法。
  
  an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1
  
  =(-2)2an-2+(-2)·3n-2+3n-1
  
  =(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1
  
  =(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1
  
  =(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1
  
  =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5
  
  ③an+1=λan+p·qn(pq≠0)
  
  (ⅰ)当λ=qn+1时,等式两边同除以,就可构造出一个等差数列{an/qn}。
  
  例9、在数列{an}中,a1=4,an+1+2n+1,求an。
  
  分析:在an+1=2an+2n+1两边同除以2n+1,得an+1/2n+1=an/2n+1
  
  ∴{an/2n}是以a1/2=2为首项,1为公差的等差数列。
  
  (ⅱ)当λ≠q时,等式两边同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再构造成等比数列求bn,从而求出an。
  
  例10、已知a1=1,an=3an-1+2n-1,求an
  
  分析:从an=3an-1+2n-1两边都除以2n,
  
  得an/2n=3/2 an-1/2n-1+1/2
  
  令an/2n=bn
  
  则bn=3/2bn-1+1/2
  
  ④an=p(an——1)q(p、q为常数)
  
  例11、已知an=1/a an——12,首项a1,求an。
  
  方法一:将已知两边取对数
  
  得lgan=2lgan——1-lga
  
  令bn=lgan
  
  得bn=2bn-1-lga,再构造成等比数列求bn,从而求出an。
  
  方法二:迭代法
  
  an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2
  
  =1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23
  
  =……=a·(a1/a)2n——1
  
  ⑤an+1=ran/pan+q(p、q、r为常数,pr≠0,q≠r)
  
  将等式两边取倒数,得1/an+1=q/r·1/an+p/r,再构造成等比数列求an。
  
  例12、在{an}中,a1=1,an+1=an/an+2,求an
  
  解:∵an+1=an/an+2
  
  ∴1/an+1=2·1/an+1
  
  两边加上1,得1/an+1+1=2(1/an+1)
  
  ∴{1/an+1}是以1/an+1=2为首项,2为公比的等比数列
  
  ∴ 1/an+1=2×2n-1=2n
  
  ∴an=1/2n-1
  
  以上罗列出求数列通项公式的解题思路虽然很清晰,但是一般考生对第三项中的5种类型题用构选法和迭代法都比较困难的。遇到此情况,可转化为第一种类型解决,即从an与Sn的关系式求出数列的前几项,用观察法求an。 《求数列通项公式的解题思路》
本文链接地址:http://www.oyaya.net/fanwen/view/103369.html

★温馨提示:你可以返回到 数学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。