21世纪以煤和天然气为原料的C1化学
solid trickle flow reactor简称(GSSTFR)是一种新型反应系统。它集催化剂的催化作用和吸附剂的吸附作用于同一一反应器,在进行合成反应的同时,进行产品的吸附分离,产品甲醇一经生成,即被吸附剂吸附,使合成反应平衡不断向产品方向转移,从而克服了化学平衡的限制,CO的单程转化率已接近100%,循环操作可以取消。这项革新很有吸引力,受到了广泛的重视。GSSTFR系统气相是合成气和甲醇,一个固相是Cu基催化剂,固定在反应器的栅架上,另一个固相是硅铝裂化催化剂,以滴流状态流过催化剂床层,用于吸附反应区域中的甲醇。为了评价GSSTFR系统的可行性,荷兰Twente工业大学建立了一套微型试验装置,在解决了固体输送和气。固分离问题、实现连续化后,其经济效果是可观的。
(4)耐硫催化剂
最近日本公害资源研究所开发了一种新的Pd系合成甲醇催化剂,据称无需深度脱硫即可直接用于合成气的甲醇合成。这种新型催化剂以带状云母作为载体。它是一种具有层状结构物的矿物,层与层之间有Ni离子,这种矿物具有溶胀性和离子交换性。这种耐硫催化剂就是通过离子交换法使Pd载入载体中取代Ni离子而制得的。
(5) 超临界合成甲醇反应器
为了改变合成甲醇时大量未转化的合成气循环的情况,我国中科院山西煤化所开发了超临界相合成甲醇新工艺。该技术的特点是在甲醇反应器中添加超临界或亚临界介质,使合成的甲醇连续不断地从气相转移至超临界相,从而克服了传统的合成甲醇尾气大量循环(约为新鲜气的5~8倍)的情况。在山西太原化肥厂一所作的中试结果证明,在无尾气或新鲜气与尾气循环比为1:l时,CO转化率达到了90%,甲醇时空产率平均值达到0.46t/h·t催化剂,当放空气能合理利用时具有较好的工业化前景,现该所正与宁夏化肥厂合作进行进一步的开发和放大试验工作。
(6)燃料甲醇
在国家科委支持下,我国从德国引进了三辆以纯甲醇为燃料的汽车,经过长达8年的长期公路运行试验,取得了很好的成果。公路实际运行实践验证,1.6~1.7t甲醇,相当于1t汽油。按现行的汽油和甲醇市场价格对比,其经济效益明显,且尾气排放较汽油车大幅度减少,对改善城市环保有较好的效果。这种环保型汽车的发展,无疑将进一步促进甲醇工业的发展。
1.2.2合成其他含氧化合物
(1)甲醇碳基化制醋酸及醋酥
甲醇碳基化制醋酸及醋酐是近年来C1化学的重大进展,美国和英国均已实现了工业化。自1982年以来,世界醋酸生产能力中,甲醇碳基合成法已占50%以上。最近德国赫斯特公司(Hoechst)将含氢的CO鼓泡导人醋酸甲酯和甲醇的混合液中进行碳基化反应,所得醋酐产率可达1766g/gRh-h。在醋酸甲酯制备方面也取得了进展。美国联合碳化物公司已将甲醇碳基化制醋酸甲酯和醋酸混合液的反应选择性提高到接近100%。碳基化主要采用锗络合催化剂,助催化剂为碘化物。因此,各国都重视锗和碘的回收。据德国赫斯特公司发表的专利,它可使醋酸甲酯和甲醇碳基化产品液中的总碘量由2 X 10-6降低至5 X 10-12以下。我国在这方面也取得了小试成果。我国开发的固载化催化剂可以基本解决铐的流失问题。
(2)草酸及乙二醇
CO通过氧化偶联制草酸,也是一项新技术。甲醇与亚硝酸(N2O3)反应生成亚硝酸甲酯,在Pd催化剂上实现氧化偶联,得到草酸甲酯,经水解后生成草酸;氧化产品中的NO再氧化成N2O3,循环使用。这一过程实际并不消耗甲醇和亚硝酸,只是CO与O2和H20合成草酸。若用乙醇代替甲醇,则可生成草酸二乙酯,再加氢即可制得乙二醇,乙醇可循环使用。这是一条非石油原料合成乙二醇的路线。日本目前已将合成气制乙二醇列为C1化学技术开发的基本方向之一。日本工业技术院最近又获得了一项专利,它采用乙酞丙酮基二碳基锗作催化剂,合成气经液相反应制得乙二醇,产率可达17. 08 mol乙二醇/g原子铑。我国中科院福建物构所在CO常压催化偶联合成草酸用催化剂的研制方面,进行了原料配比和各种空速条件对催化合成草酸二甲酯的研究,并优选了适宜的反应条件。改进配制的Pd(2.0%)/a-Al2O3催化剂在常压、140℃、CO/CH3ONO=1.5、空速3000 h-l条件下,时空收率达到999g/L·h。该所并与福建石油化工设计院和福建南靖氨厂合作进行了规模为100t/a的合成氨铜洗回收CO、常压催化合成草酸二甲酯及水解制草酸的中试。
日本国立工业化学实验室开发了一种新的甲醇制乙二醇的工艺。它采用氧化锗催化剂在常温常压下通过光辐射活化,将甲醇与丙酮的混合液直接合成为乙二醇,据称选择性可达80%。
(3)甲醇碳基化制甲酸甲酯,再水解制甲酸
德国Hu1s公司以甲醇和CO在叔二胺与乙烷作用下进行加压碳基化反应制得甲酸甲酯(HCOOCH3),转化率为80.7%,选择性达99.4%。同时,该公司还开发了避免甲酸甲酯再酯化而制得无水甲酸甲酯的新工艺。
(4)合成气制甲基叔丁基醚
采用多组份催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚。这是一条很值得重视的由天然气(或煤)制取高辛烷值添加剂的技术路线。
(5)气相法合成乙醇
日本乙化学组合有关企业和研究所,目前已完成每日2. 2 kg的小试,在筛选催化剂的基础上,对以Rh/SiO,为母体的催化剂中添加各种金属对催化剂中Rh进行修饰,发现添加能促进CO解离的金属可提高催化剂活性,添加能促进加氢能力的金属可提高生成乙醇的活性和选择性。小试证明,采用复合式催化剂时,乙醇选择性可达70%,乙醇时空收率为250g/h。
(6)甲醇制醋酸乙烯
美国哈康(Ha1con)公司曾进行过从甲醇与醋酸出发制取醋酸乙烯的研究开发。
1.3 合成烃类
1.3.1 甲醇裂解制烯烃
为了应付未来的石油危机,各国对甲醇裂解制烯烃的研究工作已进行了多年。主要研究方向是抑制生成甲烷和高级烷烃的选择性,提高烯烃选择性。美国飞马(Mobil)公司开发成功了ZSM-34沸石催化剂,甲醇转化为烯烃的选择性达到80%。德国BASF公司在日产It的中试中发现钙沸石具有良好的性能,在500~550℃下甲醇转化率为100%,乙烯加丙烯的选择性大于60%。日本用磷酸钙改性HZSM-5沸石,在600C下甲醇转化率为95%~100%,乙烯十丙烯的选择性达到了67.5%。我国中科院大连化物所在甲醇裂解制烯烃的科研工作方面居世界领先地位,从日产5kg模式试验获得了优良的效果,甲醇转化率为100%,对烯烃的选择性达到85%~90%,乙烯十丙烯的选择性达到了70%~80%。每吨烯烃消耗甲醇2.73 t(理论消耗量为2.3 t),每吨乙烯十丙烯的甲醇消耗约为3 t。
据有关文献报道,通过对轻石脑油和甲醇转化制乙烯的经济比较,可初步得出如下结论:
(1)天然气经甲醇制乙烯,其总投资要比传统的石脑油路线增加约84%。
(2)当轻质石脑油价格为200美元/t时,相应的天然气价格为3.6美分/m3此时两条路线的产品乙烯价值相当。
《21世纪以煤和天然气为原料的C1化学(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/113471.html
(4)耐硫催化剂
最近日本公害资源研究所开发了一种新的Pd系合成甲醇催化剂,据称无需深度脱硫即可直接用于合成气的甲醇合成。这种新型催化剂以带状云母作为载体。它是一种具有层状结构物的矿物,层与层之间有Ni离子,这种矿物具有溶胀性和离子交换性。这种耐硫催化剂就是通过离子交换法使Pd载入载体中取代Ni离子而制得的。
(5) 超临界合成甲醇反应器
为了改变合成甲醇时大量未转化的合成气循环的情况,我国中科院山西煤化所开发了超临界相合成甲醇新工艺。该技术的特点是在甲醇反应器中添加超临界或亚临界介质,使合成的甲醇连续不断地从气相转移至超临界相,从而克服了传统的合成甲醇尾气大量循环(约为新鲜气的5~8倍)的情况。在山西太原化肥厂一所作的中试结果证明,在无尾气或新鲜气与尾气循环比为1:l时,CO转化率达到了90%,甲醇时空产率平均值达到0.46t/h·t催化剂,当放空气能合理利用时具有较好的工业化前景,现该所正与宁夏化肥厂合作进行进一步的开发和放大试验工作。
(6)燃料甲醇
在国家科委支持下,我国从德国引进了三辆以纯甲醇为燃料的汽车,经过长达8年的长期公路运行试验,取得了很好的成果。公路实际运行实践验证,1.6~1.7t甲醇,相当于1t汽油。按现行的汽油和甲醇市场价格对比,其经济效益明显,且尾气排放较汽油车大幅度减少,对改善城市环保有较好的效果。这种环保型汽车的发展,无疑将进一步促进甲醇工业的发展。
1.2.2合成其他含氧化合物
(1)甲醇碳基化制醋酸及醋酥
甲醇碳基化制醋酸及醋酐是近年来C1化学的重大进展,美国和英国均已实现了工业化。自1982年以来,世界醋酸生产能力中,甲醇碳基合成法已占50%以上。最近德国赫斯特公司(Hoechst)将含氢的CO鼓泡导人醋酸甲酯和甲醇的混合液中进行碳基化反应,所得醋酐产率可达1766g/gRh-h。在醋酸甲酯制备方面也取得了进展。美国联合碳化物公司已将甲醇碳基化制醋酸甲酯和醋酸混合液的反应选择性提高到接近100%。碳基化主要采用锗络合催化剂,助催化剂为碘化物。因此,各国都重视锗和碘的回收。据德国赫斯特公司发表的专利,它可使醋酸甲酯和甲醇碳基化产品液中的总碘量由2 X 10-6降低至5 X 10-12以下。我国在这方面也取得了小试成果。我国开发的固载化催化剂可以基本解决铐的流失问题。
(2)草酸及乙二醇
CO通过氧化偶联制草酸,也是一项新技术。甲醇与亚硝酸(N2O3)反应生成亚硝酸甲酯,在Pd催化剂上实现氧化偶联,得到草酸甲酯,经水解后生成草酸;氧化产品中的NO再氧化成N2O3,循环使用。这一过程实际并不消耗甲醇和亚硝酸,只是CO与O2和H20合成草酸。若用乙醇代替甲醇,则可生成草酸二乙酯,再加氢即可制得乙二醇,乙醇可循环使用。这是一条非石油原料合成乙二醇的路线。日本目前已将合成气制乙二醇列为C1化学技术开发的基本方向之一。日本工业技术院最近又获得了一项专利,它采用乙酞丙酮基二碳基锗作催化剂,合成气经液相反应制得乙二醇,产率可达17. 08 mol乙二醇/g原子铑。我国中科院福建物构所在CO常压催化偶联合成草酸用催化剂的研制方面,进行了原料配比和各种空速条件对催化合成草酸二甲酯的研究,并优选了适宜的反应条件。改进配制的Pd(2.0%)/a-Al2O3催化剂在常压、140℃、CO/CH3ONO=1.5、空速3000 h-l条件下,时空收率达到999g/L·h。该所并与福建石油化工设计院和福建南靖氨厂合作进行了规模为100t/a的合成氨铜洗回收CO、常压催化合成草酸二甲酯及水解制草酸的中试。
日本国立工业化学实验室开发了一种新的甲醇制乙二醇的工艺。它采用氧化锗催化剂在常温常压下通过光辐射活化,将甲醇与丙酮的混合液直接合成为乙二醇,据称选择性可达80%。
(3)甲醇碳基化制甲酸甲酯,再水解制甲酸
德国Hu1s公司以甲醇和CO在叔二胺与乙烷作用下进行加压碳基化反应制得甲酸甲酯(HCOOCH3),转化率为80.7%,选择性达99.4%。同时,该公司还开发了避免甲酸甲酯再酯化而制得无水甲酸甲酯的新工艺。
(4)合成气制甲基叔丁基醚
采用多组份催化剂,可从合成气制含60%异丁醇和40%甲醇的混合物,异丁醇脱水成异丁烯,从而可完成由合成气直接制取甲基叔丁基醚。这是一条很值得重视的由天然气(或煤)制取高辛烷值添加剂的技术路线。
(5)气相法合成乙醇
日本乙化学组合有关企业和研究所,目前已完成每日2. 2 kg的小试,在筛选催化剂的基础上,对以Rh/SiO,为母体的催化剂中添加各种金属对催化剂中Rh进行修饰,发现添加能促进CO解离的金属可提高催化剂活性,添加能促进加氢能力的金属可提高生成乙醇的活性和选择性。小试证明,采用复合式催化剂时,乙醇选择性可达70%,乙醇时空收率为250g/h。
(6)甲醇制醋酸乙烯
美国哈康(Ha1con)公司曾进行过从甲醇与醋酸出发制取醋酸乙烯的研究开发。
该工艺是首先将醋酸转化成醋酸甲酯,再进一步转化成二醋酸亚乙酯,经热分解后得到醋酸乙烯和醋酸,但距工业化实用阶段尚有一定距离。
1.3 合成烃类
1.3.1 甲醇裂解制烯烃
为了应付未来的石油危机,各国对甲醇裂解制烯烃的研究工作已进行了多年。主要研究方向是抑制生成甲烷和高级烷烃的选择性,提高烯烃选择性。美国飞马(Mobil)公司开发成功了ZSM-34沸石催化剂,甲醇转化为烯烃的选择性达到80%。德国BASF公司在日产It的中试中发现钙沸石具有良好的性能,在500~550℃下甲醇转化率为100%,乙烯加丙烯的选择性大于60%。日本用磷酸钙改性HZSM-5沸石,在600C下甲醇转化率为95%~100%,乙烯十丙烯的选择性达到了67.5%。我国中科院大连化物所在甲醇裂解制烯烃的科研工作方面居世界领先地位,从日产5kg模式试验获得了优良的效果,甲醇转化率为100%,对烯烃的选择性达到85%~90%,乙烯十丙烯的选择性达到了70%~80%。每吨烯烃消耗甲醇2.73 t(理论消耗量为2.3 t),每吨乙烯十丙烯的甲醇消耗约为3 t。
据有关文献报道,通过对轻石脑油和甲醇转化制乙烯的经济比较,可初步得出如下结论:
(1)天然气经甲醇制乙烯,其总投资要比传统的石脑油路线增加约84%。
(2)当轻质石脑油价格为200美元/t时,相应的天然气价格为3.6美分/m3此时两条路线的产品乙烯价值相当。
《21世纪以煤和天然气为原料的C1化学(第2页)》