21世纪以煤和天然气为原料的C1化学
(3)以天然气为原料经甲醇生产乙烯,其工厂成本较低。当天然气价格为8美分/m3时,若欲使乙烯的工厂成本与轻石脑油为原料的相当,则轻石脑油的价格相应应为162美元/t。
1.3.2合成气制烯烃
目前,合成气制烯烃已成为费托合成化学中新的研究方向之一,一些研究结果已显示出明显的工业化前景。据报道,有的研究已取得了低碳烯烃收率接近70g/m3合成气的结果。前景尽管是诱人的,但离实际工业化尚有一定距离,由合成气制取低碳烯烃,还有一些在转化过程中的核心科学问题有待解决:一是在CO加氢合成烃类反应中,如何抑制甲烷的生成(低碳烯烃的合成反应需在高温下进行,而温度升高,甲烷生成量也随之增加);二是经典的费托合成反应产物受Schulz一Flozy(F一y)分布规律的限制。为了解决这些问题,一些科研单位在改进催化剂方面作了大量研究工作,发现采用碱改性ZSM担载Fe-MnO催化剂,其烯烃的选择性达到了50%以上。
1.3.3 甲烷氧化偶联制乙烯
甲烷通过合成气转化,在能量利用上是很不经济的。将甲烷直接氧化脱氢生成乙烯,摆脱造气工序,无疑具有巨大的经济效益。这一方向近年来一直受到国内外的重视。美国阿尔科(Arco)公司开发的催化剂在700~800℃,600~10000 h-1)空速下,获得甲烷转化率25%,烃类选择性75%,其中乙烯选择性50%,催化剂寿命大于半年,完成了年产35万t乙烯装置的模拟设计,初步测算需投资1.6亿美元,预计乙烯成本可低于现行石脑油制乙烷的成本。肯达Eindhoren大学使用Twente大学研究的LiCO3/MgO催化剂完成了反应器设计。该设计在海牙召开的美国化学工程师欧洲年会上被认为是最有前途的。荷兰科学家提出了两种方案:方案一甲烷转化率30%,C2烃选择性为80%;方案二甲烷转化率50%,C2烃选择性50%。以1989年1月价格为计算基准,方案一投资1.7亿美元,方案二投资2.07亿美元。而采用传统的石脑油裂解工艺,投资则高达4.7亿美元。预计乙烯的成本为450~550美元/t,均低于石脑油裂解制乙烯的成本。我国兰州物化所通过3年多的工作,也取得了可喜的进展,有的催化剂(碱金属/过渡金属复合氧化物)甲烷转化率达到25%~35%,对C2+的选择性为70%~80%。国家计委科技司已把甲烷氧化偶联制乙烯的研究工作列为科技攻关重点项目。
1.4 合成液体燃料
合成液体燃料主要有间接法和直接法两大类。间接法是先制取合成气再进一步合成油品;直接法是在高压下进行煤的直接加氢液化。国外一些化工公司对合成液体燃料进行了评价和经济分析,结论是当油价每桶在25~30美元时,合成液体燃料方具有工业化价值。
1.4.1 合成气制汽油
国外合成气制汽油已经工业化的技术有费托(F一T)合成工艺和甲醇制汽油(MTG)工艺。前者在南非已建成了三个大厂,合成汽油产量已达350万t/a,并副产乙烯453卜山后者系美国飞马公司(Mobil)的技术,新西兰采用该技术已建成了年产50万、无铅汽油的工厂。正在开发的工艺有美国飞马公司的两段改良费托合成和丹麦托普索公司的Tigas工艺。托普索公司分析了MTG法的不足之处,将一段催化剂改为合成含氧化物复合催化剂,然后使用HZSM-5分子筛将含氧化物转化成汽油,已建设了规模为每小时处理合成气400m’的小型中试装置。中试工厂加工了2.0 X 106m3合成气,共生产了280 t 烃类,其中汽油为205 t 相当干每m3合成气生产140g烃类,其中汽油为103g。日本新能源组合在四日市建成了合成气制汽油(AMSTG)中试装置,规模为日产汽油1桶。试验证明,每立方米合成气可生产汽油105~150g。此外,荷兰壳牌公司开发了SMDS 工艺,用一氧化碳加氧合成高分子石蜡烃,再加氢异构化成为发动机燃料,其柴油模试产品分布为:15%石脑油,25%煤油,60%柴油。
我国山西煤化所对两段改良费托合成也做了大量科研开发工作,已完成了模试,并分别在山西代县和晋城两个化肥厂进行了中试和工业试验。前者设计能力为汽油100t/a,后者为年产80号汽油2000t。阶段试验结果表明,每标准立方米CO+H2的C5+矿产率接近100g。工业试验由于采用了不成熟的常温甲醇洗脱硫,造成甲醇降解,消耗过高,未能长期进柴行下去,但试验证明,其一段铁系反应器和二段分子筛反应器设计是成功的,为下一步工业放大创造了条件。所生产的汽油马达法辛烷值大于80。此后煤化所又对一段催化剂进行了筛选,制成了超细粒子铁锰催化剂,通过低碳烯烃制汽油。该工艺融合了Tigas和MFT I艺的优点,可以在较低压力和高CO转化率下实现一、二段反应在等压下操作。单管试验证明,每标准立方米CO+H,的汽油收率达到了140g,接近世界水平,此过程联产城市煤气或化肥,工业化前景明朗。为了给实现工业化打好基础,现山西煤化所正在中科院支持下进行万吨级SMFT合成气制汽油的软件包开发工作。
1.4.2 煤炭直接液化
煤炭直接液化,尽管前景并不明朗,但发达国家从战略技术储备出发,均投入了较大的人力和物力进行技术开发工作。美国和德国目
2. 对发展我国C1化学的几点建议
面对21世纪高科技发展和我国即将加入WTO的挑战,我国以煤和天然气为原料的C1化学也应当而且必将有所发展,有所进步。为此,笔者特提出如下建议。
2.1 建立以天然气为原料、以甲醇为主体的C1化学基地
前已述及,按现行甲醇和汽油市场价格,甲醇作为汽车的燃料,既有明显的经济优势,又有很好的环境保护效果。为此,在天然气资源丰富的地区,以国产设备为基础,适当引进国外先进技术建立年产45万、甲醇的大型装置,以甲醇为基础原料,一方面向醋酸、醋片、醋酸乙烯等下游产品发展,另一方面,可在附近幅射建设甲醇贮、运和甲醇燃料添加站,把烧甲醇汽车逐步推向市场。
2.2 建立煤、电、化联合企业集团
21世纪是环保世纪。为了改变现有燃煤电站锅炉排放烟气的严重污染情况,借鉴德国吕恩、美国冷水和普拉昆曼等1GCC联合循环发电示范厂运行经验,在煤炭产地附近利用廉价煤为原料,集中煤、电、化各方面力量,建立煤制气、联合循环发电(IGCC)和生产化工产品的联合示范企业集团,应当是21世纪初期我国的一项重点工作。煤、电、化联合示范装置的建立,不仅能解决烟气排放污染问题,又能提高能源利用效率,还可回收硫磺和CO2等资源,使资源得到较好的综合利用。
2.3 积极开发合成气制乙二醇和合成气及甲醇制烯烃技术,并建立示范装置
福建物构所开发了合成气制乙二醇技术,并和天津大学合作,在天津有机化工厂进行了扩大试验,有较好的经济效益。甲醇及合成气制烯烃技术,也已由大连化物所、清华大学等进行了多年试验,取得了接近世界水平的成果。 《21世纪以煤和天然气为原料的C1化学(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/113471.html
1.3.2合成气制烯烃
目前,合成气制烯烃已成为费托合成化学中新的研究方向之一,一些研究结果已显示出明显的工业化前景。据报道,有的研究已取得了低碳烯烃收率接近70g/m3合成气的结果。前景尽管是诱人的,但离实际工业化尚有一定距离,由合成气制取低碳烯烃,还有一些在转化过程中的核心科学问题有待解决:一是在CO加氢合成烃类反应中,如何抑制甲烷的生成(低碳烯烃的合成反应需在高温下进行,而温度升高,甲烷生成量也随之增加);二是经典的费托合成反应产物受Schulz一Flozy(F一y)分布规律的限制。为了解决这些问题,一些科研单位在改进催化剂方面作了大量研究工作,发现采用碱改性ZSM担载Fe-MnO催化剂,其烯烃的选择性达到了50%以上。
1.3.3 甲烷氧化偶联制乙烯
甲烷通过合成气转化,在能量利用上是很不经济的。将甲烷直接氧化脱氢生成乙烯,摆脱造气工序,无疑具有巨大的经济效益。这一方向近年来一直受到国内外的重视。美国阿尔科(Arco)公司开发的催化剂在700~800℃,600~10000 h-1)空速下,获得甲烷转化率25%,烃类选择性75%,其中乙烯选择性50%,催化剂寿命大于半年,完成了年产35万t乙烯装置的模拟设计,初步测算需投资1.6亿美元,预计乙烯成本可低于现行石脑油制乙烷的成本。肯达Eindhoren大学使用Twente大学研究的LiCO3/MgO催化剂完成了反应器设计。该设计在海牙召开的美国化学工程师欧洲年会上被认为是最有前途的。荷兰科学家提出了两种方案:方案一甲烷转化率30%,C2烃选择性为80%;方案二甲烷转化率50%,C2烃选择性50%。以1989年1月价格为计算基准,方案一投资1.7亿美元,方案二投资2.07亿美元。而采用传统的石脑油裂解工艺,投资则高达4.7亿美元。预计乙烯的成本为450~550美元/t,均低于石脑油裂解制乙烯的成本。我国兰州物化所通过3年多的工作,也取得了可喜的进展,有的催化剂(碱金属/过渡金属复合氧化物)甲烷转化率达到25%~35%,对C2+的选择性为70%~80%。国家计委科技司已把甲烷氧化偶联制乙烯的研究工作列为科技攻关重点项目。
1.4 合成液体燃料
合成液体燃料主要有间接法和直接法两大类。间接法是先制取合成气再进一步合成油品;直接法是在高压下进行煤的直接加氢液化。国外一些化工公司对合成液体燃料进行了评价和经济分析,结论是当油价每桶在25~30美元时,合成液体燃料方具有工业化价值。
1.4.1 合成气制汽油
国外合成气制汽油已经工业化的技术有费托(F一T)合成工艺和甲醇制汽油(MTG)工艺。前者在南非已建成了三个大厂,合成汽油产量已达350万t/a,并副产乙烯453卜山后者系美国飞马公司(Mobil)的技术,新西兰采用该技术已建成了年产50万、无铅汽油的工厂。正在开发的工艺有美国飞马公司的两段改良费托合成和丹麦托普索公司的Tigas工艺。托普索公司分析了MTG法的不足之处,将一段催化剂改为合成含氧化物复合催化剂,然后使用HZSM-5分子筛将含氧化物转化成汽油,已建设了规模为每小时处理合成气400m’的小型中试装置。中试工厂加工了2.0 X 106m3合成气,共生产了280 t 烃类,其中汽油为205 t 相当干每m3合成气生产140g烃类,其中汽油为103g。日本新能源组合在四日市建成了合成气制汽油(AMSTG)中试装置,规模为日产汽油1桶。试验证明,每立方米合成气可生产汽油105~150g。此外,荷兰壳牌公司开发了SMDS 工艺,用一氧化碳加氧合成高分子石蜡烃,再加氢异构化成为发动机燃料,其柴油模试产品分布为:15%石脑油,25%煤油,60%柴油。
我国山西煤化所对两段改良费托合成也做了大量科研开发工作,已完成了模试,并分别在山西代县和晋城两个化肥厂进行了中试和工业试验。前者设计能力为汽油100t/a,后者为年产80号汽油2000t。阶段试验结果表明,每标准立方米CO+H2的C5+矿产率接近100g。工业试验由于采用了不成熟的常温甲醇洗脱硫,造成甲醇降解,消耗过高,未能长期进柴行下去,但试验证明,其一段铁系反应器和二段分子筛反应器设计是成功的,为下一步工业放大创造了条件。所生产的汽油马达法辛烷值大于80。此后煤化所又对一段催化剂进行了筛选,制成了超细粒子铁锰催化剂,通过低碳烯烃制汽油。该工艺融合了Tigas和MFT I艺的优点,可以在较低压力和高CO转化率下实现一、二段反应在等压下操作。单管试验证明,每标准立方米CO+H,的汽油收率达到了140g,接近世界水平,此过程联产城市煤气或化肥,工业化前景明朗。为了给实现工业化打好基础,现山西煤化所正在中科院支持下进行万吨级SMFT合成气制汽油的软件包开发工作。
1.4.2 煤炭直接液化
煤炭直接液化,尽管前景并不明朗,但发达国家从战略技术储备出发,均投入了较大的人力和物力进行技术开发工作。美国和德国目
前在这方面处于领先地位。由于煤炭含氢量严重不足,因此需要在高压(20MPa)下进行加氢液化。液化需要消耗大量氢气,因此制氢的成本在一定程度上决定着煤炭液化在经济上是否可行。最近中国神华集团煤炭科学研究总院与美国碳氢化合物技术公司(HTI)合作,采用HTI开发的煤炭液化技术进行日处理干煤12000t日产汽油2900t、柴油4170t等产品的预可行性研究工作;其配套所需的纯氢量高达11.5 X 106m3/d。该工程投资巨大,按目前的油价,前景尚不明朗。但从战略需要出发,在当前我国发动机燃料大量进口的严峻形势下,很有必要对煤炭液化进行积极探索,以便为在条件成熟时建设工业规模示范装置打好基础。
2. 对发展我国C1化学的几点建议
面对21世纪高科技发展和我国即将加入WTO的挑战,我国以煤和天然气为原料的C1化学也应当而且必将有所发展,有所进步。为此,笔者特提出如下建议。
2.1 建立以天然气为原料、以甲醇为主体的C1化学基地
前已述及,按现行甲醇和汽油市场价格,甲醇作为汽车的燃料,既有明显的经济优势,又有很好的环境保护效果。为此,在天然气资源丰富的地区,以国产设备为基础,适当引进国外先进技术建立年产45万、甲醇的大型装置,以甲醇为基础原料,一方面向醋酸、醋片、醋酸乙烯等下游产品发展,另一方面,可在附近幅射建设甲醇贮、运和甲醇燃料添加站,把烧甲醇汽车逐步推向市场。
2.2 建立煤、电、化联合企业集团
21世纪是环保世纪。为了改变现有燃煤电站锅炉排放烟气的严重污染情况,借鉴德国吕恩、美国冷水和普拉昆曼等1GCC联合循环发电示范厂运行经验,在煤炭产地附近利用廉价煤为原料,集中煤、电、化各方面力量,建立煤制气、联合循环发电(IGCC)和生产化工产品的联合示范企业集团,应当是21世纪初期我国的一项重点工作。煤、电、化联合示范装置的建立,不仅能解决烟气排放污染问题,又能提高能源利用效率,还可回收硫磺和CO2等资源,使资源得到较好的综合利用。
2.3 积极开发合成气制乙二醇和合成气及甲醇制烯烃技术,并建立示范装置
福建物构所开发了合成气制乙二醇技术,并和天津大学合作,在天津有机化工厂进行了扩大试验,有较好的经济效益。甲醇及合成气制烯烃技术,也已由大连化物所、清华大学等进行了多年试验,取得了接近世界水平的成果。 《21世纪以煤和天然气为原料的C1化学(第3页)》