EP1C6Q在水轮机组转速测量中的应用
关键词:状态监测;现场总线;现场可编程门阵列;EP1C6Q
随着工业生产与科学技术的发展,大型水轮机组的自动化水平也在不断提高。而这些设备一旦发生故障,将会给人们的生活和生命财产造成极大的威胁。因此,对其运行状态进行监测,及时发现故障征兆具有重要意义。现场可编程门阵列(FPGA,Field Programmable Gate Array )的出现是超大规模集成电路和计算机辅助设计技术发展的结果。它具有集成度高、多功能、低功耗、开发周期短等特点,而且可以很方便地对设计进行在线修改,因此获得了广大用户的青睐,应用范围也越来越广。本文首先介绍了ALTERA公司推出的低价位、高性能CYCLONE系列FPGA器件EP1C6Q的特点和内部结构,然后结合在水轮机组状态监测开发系统中遇到的实际问题,给出了相应的解决方案,最后就开发过程中遇到的一些实际问题,提出了笔者自己的看法。
1 EP1C6Q的结构特点
EP1C6Q是ALTERA公司低价位CYCLONE系列FPGA的一种。它采用1.5V内核电压,内嵌92106位存储区间,可提供两个锁相环和双倍数据传输速率(DDR)的接口电路。其具体特点如下:(凹丫丫范文网fanwen.oyaya.net收集整理)
●采用240个引脚的FPQF封装形式,能提供185个IO用户引脚和5980个逻辑单元。
●具有20个4608位的RAM存储区,最高可支持200MHz的数据传输。每个存储区均包括单口或双口RAM、ROM、FIFO等各类存储器件,并支持8位、16位、32位、36位等数据存储类型。
●片上的锁相环电路可以提供输入时钟的1~32分频或倍频、156~417ps移相或可变占空比的时钟输出,输出时钟信号的特性可直接在开发软件QUARTUS2里设定。经过锁相环输出的时钟信号既可以作为内部的全局时钟,也可以输出到片外供其它电路使用。
●多功能的IO结构支持差分和单端输入,并与3.3V、32位、66MHz的PCI局部总线兼容;IO输出可以根据需要调整驱动能力,并具有压摆率控制、三态缓冲、总线状态保持等功能;整个器件的IO引脚分为四个区,每一个区可以独立采用不同的输入电压,并可提供不同电压等级的IO输出。
2 在水轮机组转速测量中的应用
水轮机组的工作效率是系统状态监测中的一项重要指标,而机组的工作效率与当前时刻的转速密切相关。转速测量的关键是对六十五路脉冲信号周期的测量。笔者采用了EP1C6Q器件内部的65个计数器同时工作的测量方法。
2.1 水轮机组转速测量原理
该水轮机组转速测量装置如图1所示,它由六十五个微型机械传感器组成,其中六十四个传感器分布在对称的四个转轴上,第六十五个传感器在轴的中心交点。流经管道的水流将带动传感器的旋转。当传感器旋转一周后,触发电子线路产生一个脉冲信号。管道中水流的速度越快,脉冲信号的间隔越短;管道中水流的速度越慢,脉冲信号的间隔越长。这样?就可以根据脉冲信号的间隔或者说两个信号上升沿的时间长短来计算流速的大小,从而依据相应的公式计算水轮机组转速的大小。
2.2 整体设计方案及工作原理
该水轮机组系统设计方案的整体框图如图2所示。水轮机组状态监测系统采用LonWorks现场总线技术,神经元芯片是构成系统采集节点的核心,它内部包括三个微处理器,即MAC处理器、网络处理器、应用处理器,而11个输入/输出引脚则可根据不同的外部设备来灵活配置。收发器是节点之间通信的桥梁。
由于水轮机组转速比较慢,传感器发出的脉冲信号的时间间隔较长?因此?对缓变信号周期的测量应采用测周的办法。首先是将输入的脉冲信号经去抖、限幅后变成符合EP1C6Q输入信号特性要求的信号,然后当EP1C6Q接到神经元信号的测量命令后,再捕捉输入信号的上升沿。为了保证所有的通道在神经元芯片读取数据之前已经锁存,读取数据的时间间隔应保证不小于两个信号周期。神经元芯片将每个通道的计数值存储到片内RAM区,并将计算得到的转速值送到信号处理模块,以计算水轮机组的工作效率。由于流速测量传感器的分布特点是边缘传感器的信号周期比内部传感器的信号周期长,因此,笔者选择一个最靠边的传感器作为标志传感器,并由标志传感器产生读取数据的标志位信号。
《EP1C6Q在水轮机组转速测量中的应用》