矩阵式变换器双向开关四步换流技术研究
0
+
8
0
1
0
1
-
表1中的第一种开关状态直接切换到第二种开关是不行的,这样会造成电源断路。但当iL>0时,由状态1经过状态3、7、5,再切换到状态2则是可行的。同理,iL<0时,由状态4、8、6也可实现状态1到2的切换。图4绘出了这两种四步换流次序。
4四步换流的死区补偿
采用滞环比较器和过零比较器得到电流方向,并预测电流是否在死区时间内可能过零,如果不会,则第一步可以在DSP发出PWM信号之前完成,如图5所示,则四步换流的死区共为td=tc1+tc2+tc3,死区补偿后的死区时间共为td=tc2+tc3。
5GAL的四步换流方案
GAL22V10是Lattice公司生产的复杂可编程逻辑器件,其引脚间最大的传输时间为4ns,相应的计数器频率可达250MHz,具有电可擦除的CMOS结构和浮动门技术,可100次重复擦写,数据储存可达20年之久。
图6所示为矩阵式变换器的某一输出相的三个双向开关状态转换图。1表示为开关导通,0表示开关关断,前两位、中间两位和后两位分别表示与三个输入相连的双向开关。图中,椭圆形框表示稳态,矩形框表示暂态。可见,要正确实现四步换流需要知道当前状态、下一时刻状态、负载电流方向及定时器换流时间,判断得出正确的换流信号和顺序并输出到每个IGBT器件的栅极,完成换流所需的时序逻辑。
6实验仿真
图7是实验中一对双向开关换流过程的实际波形,图8是实验中两相正向开关换流过程的实际波形,可见?过DSP已成功地实现了开关之间的安全换流。通过仿真软件Matlab/Simulink也可以对矩阵式变换器(MC)双向开关的四步换流过程进行验证,采用理想开关对矩阵式变换器一相电路换流过程进行仿真,其输出电压仿真波形如图9所示。
实验中采用IGBT以集电极反串联组合构成双向开关,图10是输出线电压实验波形。
观察IGBT器件上集、射极间电压波形,可见四步换流可以将器件换流时产生的电压过冲限制在合理选定的电压耐量范围内,确保器件安全工作。
7结语
本文针对GAL控制的矩阵式变换器(MC)双向开关四步换流方案进行,然后以DSP为核心构成了矩阵式变换器的硬件系统,设计了控制系统软件,完成了异步电机拖动实验。实验结果验证了该方案的有效性 《矩阵式变换器双向开关四步换流技术研究(第2页)》