IPM驱动和保护电路的研究
间小于100ns,从而有效抑制了电流和功率峰值,提高了保护效果。
当IPM发生UV、OC、OT、SC中任一故障时,其故障输出信号持续时间tFO为1.8ms(SC持续时间会长一些),此时间内IPM会封锁门极驱动,关断IPM;故障输出信号持续时间结束后,IPM内部自动复位,门极驱动通道开放。
可以看出,器件自身产生的故障信号是非保持性的,如果tFO结束后故障源仍旧没有排除,IPM就会重复自动保护的过程,反复动作。过流、短路、过热保护动作都是非常恶劣的运行状况,应避免其反复动作,因此仅靠IPM内部保护电路还不能完全实现器件的自我保护。要使系统真正安全、可靠运行,需要辅助的外围保护电路。
2
IPM驱动电路的设计
驱动电路是IPM主电路和控制电路之间的接口,良好的驱动电路设计对装置的运行效率、可靠性和安全性都有重要意义。
2.1IGBT的分立驱动电路的设计
IGBT的驱动设计问题亦即MOSFET的驱动设计问题,设计时应注意以下几点:①IGBT栅极耐压一般在±20V左右,因此驱动电路输出端要给栅极加电压保护,通常的做法是在栅极并联稳压二极管或者电阻。前者的缺陷是将增加等效输入电容Cin,从而影响开关速度,后者的缺陷是将减小输入阻抗,增大驱动电流,使用时应根据需要取舍。图4为IGBT栅极保护原理图,其中,RG、DZ、Cin分别为等效栅极阻抗、稳压管和等效输入电容。②尽管IGBT所需驱动功率很小,但由于MOSFET存在输入电容Cin,开关过程中需要对电容充放电,因此驱动电路的输出电流应足够大,这一点设计者往往忽略。假定开通驱动时,在上升时间tr内线性地对MOSFET输入电容Cin充电,则驱动电流为Igt=CinUgs/tr,其中可取tr=2.2RCin,R为输入回路电阻。③为可靠关闭IGBT,防止擎住现象,要给栅极加一负偏压,因此最好采用双电源供电。
2.2IGBT集成式驱动电路
IGBT的分立式驱动电路中分立元件多,结构复杂,保护功能比较完善的分立电路就更加复杂,可靠性和性能都比较差,因此实际应用中大多数采用集成式驱动电路。日本富士公司的EXB系列集成电路、法国汤姆森公司的UA4002集成电路等应用都很广泛。
2.3IPM驱动电路设计
现以PM100DSA120为例进行介绍。PM100DSA120是一种D型的IPM,内部封装了两个IGBT,工作在1200V/100A以下,功率器件的开关频率最大为20kHz。由于IPM内置了驱动电路,与IGBT驱动电路设计相比,外围驱动电路的设计比较方便,只要能提供15V直流电压即可。
但是IPM对驱动电路输出电压的要求很严格?熏具体为:①驱动电压范围为15V±10%?熏电压低于13.5V将发生欠压保护,电压高于16.5V将可能损坏内部部件。②驱动电压相互隔离,以避免地线噪声干扰。③驱动电源绝缘电压至少是IPM极间反向耐压值的两倍(2Vces)。④驱动电流可以参阅器件给出的20kHz驱动电流要求,根据实际的开关频率加以修正。⑤驱动电路输出端滤波电容不能太大,这是因为当寄生电容超过100pF时,噪声干扰将可能误触发内部驱动电路。
这里介绍一种可获得高质量15V电源的方案。该方案驱动电路不仅结构紧凑、简单,而且抗干扰能力强,典 《IPM驱动和保护电路的研究(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/141086.html
当IPM发生UV、OC、OT、SC中任一故障时,其故障输出信号持续时间tFO为1.8ms(SC持续时间会长一些),此时间内IPM会封锁门极驱动,关断IPM;故障输出信号持续时间结束后,IPM内部自动复位,门极驱动通道开放。
可以看出,器件自身产生的故障信号是非保持性的,如果tFO结束后故障源仍旧没有排除,IPM就会重复自动保护的过程,反复动作。过流、短路、过热保护动作都是非常恶劣的运行状况,应避免其反复动作,因此仅靠IPM内部保护电路还不能完全实现器件的自我保护。要使系统真正安全、可靠运行,需要辅助的外围保护电路。
2
IPM驱动电路的设计
驱动电路是IPM主电路和控制电路之间的接口,良好的驱动电路设计对装置的运行效率、可靠性和安全性都有重要意义。
2.1IGBT的分立驱动电路的设计
IGBT的驱动设计问题亦即MOSFET的驱动设计问题,设计时应注意以下几点:①IGBT栅极耐压一般在±20V左右,因此驱动电路输出端要给栅极加电压保护,通常的做法是在栅极并联稳压二极管或者电阻。前者的缺陷是将增加等效输入电容Cin,从而影响开关速度,后者的缺陷是将减小输入阻抗,增大驱动电流,使用时应根据需要取舍。图4为IGBT栅极保护原理图,其中,RG、DZ、Cin分别为等效栅极阻抗、稳压管和等效输入电容。②尽管IGBT所需驱动功率很小,但由于MOSFET存在输入电容Cin,开关过程中需要对电容充放电,因此驱动电路的输出电流应足够大,这一点设计者往往忽略。假定开通驱动时,在上升时间tr内线性地对MOSFET输入电容Cin充电,则驱动电流为Igt=CinUgs/tr,其中可取tr=2.2RCin,R为输入回路电阻。③为可靠关闭IGBT,防止擎住现象,要给栅极加一负偏压,因此最好采用双电源供电。
2.2IGBT集成式驱动电路
IGBT的分立式驱动电路中分立元件多,结构复杂,保护功能比较完善的分立电路就更加复杂,可靠性和性能都比较差,因此实际应用中大多数采用集成式驱动电路。日本富士公司的EXB系列集成电路、法国汤姆森公司的UA4002集成电路等应用都很广泛。
2.3IPM驱动电路设计
现以PM100DSA120为例进行介绍。PM100DSA120是一种D型的IPM,内部封装了两个IGBT,工作在1200V/100A以下,功率器件的开关频率最大为20kHz。由于IPM内置了驱动电路,与IGBT驱动电路设计相比,外围驱动电路的设计比较方便,只要能提供15V直流电压即可。
但是IPM对驱动电路输出电压的要求很严格?熏具体为:①驱动电压范围为15V±10%?熏电压低于13.5V将发生欠压保护,电压高于16.5V将可能损坏内部部件。②驱动电压相互隔离,以避免地线噪声干扰。③驱动电源绝缘电压至少是IPM极间反向耐压值的两倍(2Vces)。④驱动电流可以参阅器件给出的20kHz驱动电流要求,根据实际的开关频率加以修正。⑤驱动电路输出端滤波电容不能太大,这是因为当寄生电容超过100pF时,噪声干扰将可能误触发内部驱动电路。
这里介绍一种可获得高质量15V电源的方案。该方案驱动电路不仅结构紧凑、简单,而且抗干扰能力强,典 《IPM驱动和保护电路的研究(第2页)》