保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

两种优化开关模式在高频SVPWM逆变电源中的应用


7A即可实现高频SVPWM逆变电源数字控制系统的设计。在TMS320LF2407A时钟输入引脚上接20MHz晶振,后经内部锁相环倍频后得40MHz时钟频率,这样指令执行周期可缩为25ns,较C240DSP速度整整提高了1倍。另外,TMS320LF2407A还具有外部集成度更高,程序存储器更大,A/D转换速度更快的特点,且其独特的空间矢量PWM波形产生电路,更为完成高频SVPWM算法提供了方便,同时可使数字控制系统最小化。
  
  对于输出频率为1000Hz的逆变器,开关频率至少要在20kHz以上,但是开关频率过高又会给DSP的运算及A/D转换带来压力。另外,死区时间在理想脉宽中所占的比例过大,对调制线性度也会造成不良影响,经权衡,本系统控制周期取为23.8μs,这样采用优化模式1时的开关频率为6的倍数42kHz,而采用优化模式2,开关频率仅为28kHz。普通的IGBT已经无法承受这么高的开关频率,所以,逆变器主电路采用分立MOSFET(IRFPC60)组成的三相桥式电路结构。为实现高频信号驱动,和最大地简化电路,硬件设计中除了采用贴片式DSP外,还采用IR公司的高压浮动MOS栅极驱动芯片IR2130。
  
  图5为逆变器系统示意图。实际工作时,DSP在每个控制周期中经A/D采样频率给定信号后,根据V/F控制原理和改进的SVPWM算法,选择优化开关模式,来产生6路PWM信号,经高速光耦隔离后送IR2130驱动6个MOS管来带动一个三相感性负载工作。
  
  IR2130为单电源+15V工作;可直接驱动600V高压系统;自带硬件死区和欠压锁定功能与过流保护功能;通过外围自举电路,可同时驱动3个桥臂的6个MOS管。注意到采用图3所示优化开关模式2时,生成的PWM波中会出现一段长时间导通或关断的脉冲信号,这就要求IR2130的自举电容能够提供足够大的驱动电荷,否则,将无法驱动高端MOS管。自举电容所需的最小电容值,可由式(5)计算。
  
  
  
  
  
  式中:Qg为高端器件栅极电荷;
  
  f为工作频率;
  
  Iqbs(max)为高端驱动电路最大静态电流;
  
  Icbs(leak)为自举电容漏电流;
  
  Qls为每个周期内,电平转换电路中的电荷要求;
  
  Vcc为芯片供电电压;
  
  Vf为自举二极管正向压降;
  
  Vls为低端器件压降或高端负载压降。
  
  图7控制系统仿真模型
  
  经计算并取安全余量后,采用4.7μF的CBB电容作为自举电容。
  
  电路设计中考虑高频逆变器的安全运行,还通过DSP的信号采集,进行过、欠压,过流,过温等保护电路的设计。
  
  硬件系统采用TOPSwitch反激式电源,分别为控制电路,驱动电路,保护电路提供+5V,±15V等5路相互隔离的辅助电源。
  
  2.2软件设计
  
  在软件编写中,根据高频逆变电源的控制要求,全部采用编译效率最高的汇编语言,这样可更有效地利用TMS320LF2407A的高速数据处理能力。同时,软件中尽量使用240x系列DSP的复合指令,如MPYA,SPAC,LTS,DMOV等,以最大程度地精简程序,减小DSP运算量。以下将结合改进的SVPWM算法,分别对两种开关优化模式进行编程。

《两种优化开关模式在高频SVPWM逆变电源中的应用(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/141217.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。