集崭新的超宽带(UWB)无线通信技术
Gbps。美国英特尔公司于2002年4月在“IDF2002SpringJapan”上对该技术进行了演示,在数米的距离内传输速率可达100Mbps。
(4)隐蔽性好,安全性高。由于UWB信号的带宽很宽,且发射功率很低,这必然使该项通信技术具有低截获能力LPD(LowProbabilityofDetection)的优点。另外超宽带还采用了跳时TH(TimeHopping)扩频技术,接收端必须在知道发射端扩频码的条件下才能解调出发送的数据信息。
(5)多径分辨能力强。从时域角度看,超宽带系统采用脉冲宽度为几纳秒的窄信号,因此具有很高的时间分辨力,相应的多径分辨率小于几十厘米;从频域的角度分析,由于UWB信号的带宽极宽,所以信号在传输过程中出现频率选择性衰落出现是一定的。然而正是因为极宽的带宽,多径衰落只在某些频点处出现,从整体上考虑,衰落掉的能量只是信号总能量很小的部分,所以该技术在抗多径方面仍具有鲁棒性。
(6
)系统容量大。香农公式给出
C=Blog2(1+S/N)(4)
可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。
(7)高精度的距离分辨力。由于超宽带定位设备的时间抖动小于20ps,如果采用GPS相同的工作原理和算法,相应的距离不确定性小于1cm。而在实际应用中,超宽带雷达系统使用的超窄脉冲信号,其距离分辨率小于30cm。
(8)穿透能力强。在具有相同带宽的无线信号中,超宽带的频率最低,因此,它在具有大容量和高距离分辨率的同时相对于毫米波信号具有更强的穿透能力。
3UWB信号的调制方式
UWB的调制方式有许多,以脉冲调制PPM(PulsePositionModulation)为例作为一个举例分析。
首先定义一个单周期脉形:
s(k)代表信号kth,w(t)为传输的单周期脉冲。
将其移至每一帧的开始:
Tf代表脉冲重复周期,j表示第j个单脉冲。
加入伪随机跳时码:
最后加入调制数据:
其中,d(k)是信息数据,δ为时移。为了满足多用户的需求,提高通信的安全性和对系统功率谱密度PSD(PowerSpectralDensity)的考虑,引入了跳时码,下面就从功率谱密度的角度来分析这个问题。
假设采用图1(a)给出的高斯单脉冲作为发送信号,且只是一串周期性的脉冲序列,由于时域信号的周期性导致其频域出现了强烈的能量类峰,这些类峰将对现存传统的无线信号造成干扰。因此需要采取某种措施将其平滑。如果采用PPM调制对脉冲的位置做出调整,可以看到:由于调制的置乱效果,频域的尖峰得到了一定的控制,但此时仍比较明显。为了进一步降低类峰的幅度,引入跳时码,这样发送信号的功率谱就会得到进一步的平滑,几乎近似于背景噪声,这也正是UWB系统能与现存无线系统并存的原因之一。图2给出了上述不同信号的PSD图和引入跳时码后的时域波形。
除PPM外,UWB信号还可以采用脉幅调制PAM(PulseAmplitudeModu 《集崭新的超宽带(UWB)无线通信技术(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/141753.html
(4)隐蔽性好,安全性高。由于UWB信号的带宽很宽,且发射功率很低,这必然使该项通信技术具有低截获能力LPD(LowProbabilityofDetection)的优点。另外超宽带还采用了跳时TH(TimeHopping)扩频技术,接收端必须在知道发射端扩频码的条件下才能解调出发送的数据信息。
(5)多径分辨能力强。从时域角度看,超宽带系统采用脉冲宽度为几纳秒的窄信号,因此具有很高的时间分辨力,相应的多径分辨率小于几十厘米;从频域的角度分析,由于UWB信号的带宽极宽,所以信号在传输过程中出现频率选择性衰落出现是一定的。然而正是因为极宽的带宽,多径衰落只在某些频点处出现,从整体上考虑,衰落掉的能量只是信号总能量很小的部分,所以该技术在抗多径方面仍具有鲁棒性。
(6
)系统容量大。香农公式给出
C=Blog2(1+S/N)(4)
可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。
(7)高精度的距离分辨力。由于超宽带定位设备的时间抖动小于20ps,如果采用GPS相同的工作原理和算法,相应的距离不确定性小于1cm。而在实际应用中,超宽带雷达系统使用的超窄脉冲信号,其距离分辨率小于30cm。
(8)穿透能力强。在具有相同带宽的无线信号中,超宽带的频率最低,因此,它在具有大容量和高距离分辨率的同时相对于毫米波信号具有更强的穿透能力。
3UWB信号的调制方式
UWB的调制方式有许多,以脉冲调制PPM(PulsePositionModulation)为例作为一个举例分析。
首先定义一个单周期脉形:
s(k)代表信号kth,w(t)为传输的单周期脉冲。
将其移至每一帧的开始:
Tf代表脉冲重复周期,j表示第j个单脉冲。
加入伪随机跳时码:
最后加入调制数据:
其中,d(k)是信息数据,δ为时移。为了满足多用户的需求,提高通信的安全性和对系统功率谱密度PSD(PowerSpectralDensity)的考虑,引入了跳时码,下面就从功率谱密度的角度来分析这个问题。
假设采用图1(a)给出的高斯单脉冲作为发送信号,且只是一串周期性的脉冲序列,由于时域信号的周期性导致其频域出现了强烈的能量类峰,这些类峰将对现存传统的无线信号造成干扰。因此需要采取某种措施将其平滑。如果采用PPM调制对脉冲的位置做出调整,可以看到:由于调制的置乱效果,频域的尖峰得到了一定的控制,但此时仍比较明显。为了进一步降低类峰的幅度,引入跳时码,这样发送信号的功率谱就会得到进一步的平滑,几乎近似于背景噪声,这也正是UWB系统能与现存无线系统并存的原因之一。图2给出了上述不同信号的PSD图和引入跳时码后的时域波形。
除PPM外,UWB信号还可以采用脉幅调制PAM(PulseAmplitudeModu 《集崭新的超宽带(UWB)无线通信技术(第2页)》