基于Z85C30的多协议串行通信设计
命令信号。
INT:中断请求,低电平有效,当SCC需要申请中断时,该信号有效。
INTACK:中断响应,低电平有效。
IEI:中断允许输入。输入,高电平有效。当有多个中断源时,IEI和IEO一起组成中断顺序链优先级排队电路。
IEO:中断允许输出。输出,高电平有效。
PCLK:时钟输入,用来同步内部信号,是标准的TTL电平信号。
TxD、RxD:发送、接收数据,分A、B两个通道。
TRxC、RTxC:通道时钟,它们能被编程为几种不同的操作械。RTxC能提供接收时钟或传送时钟(在输入方式),能提供传输时钟计数器输出(数据锁相器)、晶体振荡器输出、波特率发生器输出和输入时钟输出(它们都是在输出方式)。RTxC能提供接收时钟、传送时钟、波特率发生器时钟、数字锁相环时钟。
1.3Z85C30的接口时序
RD和WR是总线传输的两个控制信号。CE、D/C、A/B和INTACK用于控制总线传输的类型。总线上传输的地址在有效后,RD和WR才变低。CE、WR和CE、RD锁存地址的时序是一致的。
(1)读周期时序
在RD和CE有效时,A/B和D/C上的地址被锁存。在此周期内CE必须保持低,并且INTACK必须保持高。Z85X30的总线驱动设备只有在RD和CE都有效地才使能。在读操作用D/C为高时,不会影响指针的状态。当D/C为低且在内部操作完成后,指针复位到0。
(2)写周期时序
在CE和WR有效时,A/B、D/C和数据D7~D0同时被锁存。在此周期内CE必须保持低,并且INTACK必须保持高。在写操作且D/C为高时,不会影响指针的状态。当D/C为低且在内部操作完毕后,指针复位到0。
(3)中断响应周期
当INTACK为低时,进入中断响应周期。这个A/B、D/C、CE、WR信号都被忽略。
1.4Z85X30寄存器访问
访问寄存器有两个步骤,是使用寄存器指针来完成寻址的。为寻址一个指定的寄存器,先通过写入WR0的指针位来指定寄存器。因为Z85X30只有唯一的寄存器设置存在,因此,可以从两个通道中的任意一个将指针写入。当指针写入后,再次的读或写周期(当D/C为低时)将存取刚才指定的寄存器。在读和写周期结束时,指针被复位到0。
对RR8(接收数据缓冲FIFO)的读及对WR8(传送数据缓冲FIFO)的写操作,可以按以上方法进行,也可以在D/C为高时进行存取。当D/C为高时,可以直接对相应的数据寄存器进行存取,并且指针的状态为独立的。这样,允许在一个周期内寻址数据寄存器,并且不影响指针的状态。
2Z85C30与CPU的接口
以下介绍以8051作CPU与Z85C30的接口电路,如图3所示。
Z85C30的时钟选用7.0728MHz。54LS373用来锁存片选信号和Z85C30的地址(用来区分命令、数据寄存器)。因为Z85C30的写时序在数据有效后,才应出现WR的下降沿;在数据无效之前,应出现WR上升沿。用1片D触发器54LS74和2个反相器件来延迟送到Z85C30的WR。由于电路设计为TT 《基于Z85C30的多协议串行通信设计(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/144866.html
INT:中断请求,低电平有效,当SCC需要申请中断时,该信号有效。
INTACK:中断响应,低电平有效。
IEI:中断允许输入。输入,高电平有效。当有多个中断源时,IEI和IEO一起组成中断顺序链优先级排队电路。
IEO:中断允许输出。输出,高电平有效。
PCLK:时钟输入,用来同步内部信号,是标准的TTL电平信号。
TxD、RxD:发送、接收数据,分A、B两个通道。
TRxC、RTxC:通道时钟,它们能被编程为几种不同的操作械。RTxC能提供接收时钟或传送时钟(在输入方式),能提供传输时钟计数器输出(数据锁相器)、晶体振荡器输出、波特率发生器输出和输入时钟输出(它们都是在输出方式)。RTxC能提供接收时钟、传送时钟、波特率发生器时钟、数字锁相环时钟。
1.3Z85C30的接口时序
RD和WR是总线传输的两个控制信号。CE、D/C、A/B和INTACK用于控制总线传输的类型。总线上传输的地址在有效后,RD和WR才变低。CE、WR和CE、RD锁存地址的时序是一致的。
(1)读周期时序
在RD和CE有效时,A/B和D/C上的地址被锁存。在此周期内CE必须保持低,并且INTACK必须保持高。Z85X30的总线驱动设备只有在RD和CE都有效地才使能。在读操作用D/C为高时,不会影响指针的状态。当D/C为低且在内部操作完成后,指针复位到0。
(2)写周期时序
在CE和WR有效时,A/B、D/C和数据D7~D0同时被锁存。在此周期内CE必须保持低,并且INTACK必须保持高。在写操作且D/C为高时,不会影响指针的状态。当D/C为低且在内部操作完毕后,指针复位到0。
(3)中断响应周期
当INTACK为低时,进入中断响应周期。这个A/B、D/C、CE、WR信号都被忽略。
1.4Z85X30寄存器访问
访问寄存器有两个步骤,是使用寄存器指针来完成寻址的。为寻址一个指定的寄存器,先通过写入WR0的指针位来指定寄存器。因为Z85X30只有唯一的寄存器设置存在,因此,可以从两个通道中的任意一个将指针写入。当指针写入后,再次的读或写周期(当D/C为低时)将存取刚才指定的寄存器。在读和写周期结束时,指针被复位到0。
对RR8(接收数据缓冲FIFO)的读及对WR8(传送数据缓冲FIFO)的写操作,可以按以上方法进行,也可以在D/C为高时进行存取。当D/C为高时,可以直接对相应的数据寄存器进行存取,并且指针的状态为独立的。这样,允许在一个周期内寻址数据寄存器,并且不影响指针的状态。
2Z85C30与CPU的接口
以下介绍以8051作CPU与Z85C30的接口电路,如图3所示。
Z85C30的时钟选用7.0728MHz。54LS373用来锁存片选信号和Z85C30的地址(用来区分命令、数据寄存器)。因为Z85C30的写时序在数据有效后,才应出现WR的下降沿;在数据无效之前,应出现WR上升沿。用1片D触发器54LS74和2个反相器件来延迟送到Z85C30的WR。由于电路设计为TT 《基于Z85C30的多协议串行通信设计(第2页)》