Peirce*逻辑代数中的几个符号及其它
ge、Peano、Russell等人的所谓标准公理系统的演算。评价Peirce我们决不能以FPR传统的观点和标准,而要以全面的现代逻辑观点:包括各种标准和非标准逻辑、逻辑哲学和哲学逻辑都在内的正在发展着的现代逻辑思想,立足于逻辑的核心:推理,紧紧围绕逻辑的目的:设法增进我们推理的有效性,来进行实事求是的、无偏见的重新认识或者是第一次认识。展开来说,对Peirce的正确评价,其实涉及到我们逻辑研究视角的转换和拓展;任何时候,我们都千万不要把逻辑形式系统的建构与丰富而深刻的逻辑理论研究等同起来,对于真正的逻辑理论研究,我们既不能满足于烦琐概念的诡辩游戏,同样也不能是仅仅的抽象符号的纯演算,要记着,我们所采用的一切手段和工具都服务于我们心中永恒的逻辑目的:(逻辑)有效性的增进,(逻辑)真的追求。
其次,Peirce从对Aristotle逻辑的深入分析和对逻辑史的细致研究(Peirce曾建立有自己的逻辑图书馆)以及对 Kant理论的批判性发展出发,来做出自己的逻辑研究,他对逻辑的态度始终是不带偏激、不遗残缺的。表现在逻辑与数学的关系上,他早就提出,逻辑不能归结于数学,同样数学也不可能归结于逻辑;从而避免了走向Frege 和Russell他们逻辑主义的死胡同。表现在对于一阶逻辑的态度上,Peirce并不像Quine(在Frege那里也隐含着)那样宣称,如果谁不知道一阶逻辑,谁就对逻辑毫无理解,全部逻辑也就只是一阶逻辑;在他看来自我同一的量化理论只是众多逻辑系统中的一个,他常常设法给出一阶逻辑的更为深刻的基础并拓展这一范围,他说,说数学演示方法是唯一普遍有效的,这正是逻辑学家们视之为谬误而要避免的。
再次,Peirce对待形式化的思想无疑包含了模型论的全部要义。Peirce有着自己的逻辑代数等演算,但他更注重它们的解释;他相信,真正重要的不是什么形式系统,而是潜在的所表达的实在(realities),我们可自由地根据不同场合选择我们不同的系统。
最后,Peirce得益于早期在对逻辑代数研究中形成的符号逻辑系统目的即逻辑理论研究的思想,使他没有局限于使用代数的符号,而又采取了图表(graph)符号,进而形成了他著名的存在判断图表系统α、β、γ,并最终达到了“大逻辑”(a broad sense of logic)--“符号(sign)”或“象标(iconicity)”的理论的认识。其存在判断图表(existential graphs)理论,在近年来基于计算机的图表推理表示法发展之后,被应用于人工智能领域,甚至IBM的一研究者John Sowa,奠基于这一理论又发展出了一概念图表(conceptual graphs)。
上述Peirce的一系列观点,在今天处于逻辑科学前沿的Hintikka、J.V.Heijenoort等人那里得到了热烈呼应,他们把Peirce称为语言的模型论观点的一标准成员(integral member)来对待,并把他与Husserl并提,用来对抗由Frege到Heidegger的“作为语言的逻辑(logic as language)”的传统(其核心观点是,现实世界是语言的唯一解释,不存在多数可能的世界,从而否定模态逻辑的合法性,否认真理的可判定性或主张“真”的无法言说(ineffable))。
主 要 参 考 文 献
Peirce,Charles Sanders Collected Papers Of Charles Sanders Peirce edited by Charles Hartshorne and Paul Weiss The Belknap Press Of Harvard University Press ,1931-1935.
Peirce,Charles Sandes Writings of CHARLES S. PEIRCE ( A Chronological Edition ) edited by Edward C. Moore ,Indiana University Press 1984.
Peirce,Charles Sanders logic , symbolic logic 词条&nbs
Peirce,Charles Sanders Philosophical Writings of Peirce selected and edited by Justus Buchler, Dover Publications,Inc.,1955.
Hintikka,Jakko Lingua Universalis vs. Calculus Ratiocinator Kluwer Academic Publishers,1997.
相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板
本文链接地址:http://www.oyaya.net/fanwen/view/144963.html
其次,Peirce从对Aristotle逻辑的深入分析和对逻辑史的细致研究(Peirce曾建立有自己的逻辑图书馆)以及对 Kant理论的批判性发展出发,来做出自己的逻辑研究,他对逻辑的态度始终是不带偏激、不遗残缺的。表现在逻辑与数学的关系上,他早就提出,逻辑不能归结于数学,同样数学也不可能归结于逻辑;从而避免了走向Frege 和Russell他们逻辑主义的死胡同。表现在对于一阶逻辑的态度上,Peirce并不像Quine(在Frege那里也隐含着)那样宣称,如果谁不知道一阶逻辑,谁就对逻辑毫无理解,全部逻辑也就只是一阶逻辑;在他看来自我同一的量化理论只是众多逻辑系统中的一个,他常常设法给出一阶逻辑的更为深刻的基础并拓展这一范围,他说,说数学演示方法是唯一普遍有效的,这正是逻辑学家们视之为谬误而要避免的。
再次,Peirce对待形式化的思想无疑包含了模型论的全部要义。Peirce有着自己的逻辑代数等演算,但他更注重它们的解释;他相信,真正重要的不是什么形式系统,而是潜在的所表达的实在(realities),我们可自由地根据不同场合选择我们不同的系统。
最后,Peirce得益于早期在对逻辑代数研究中形成的符号逻辑系统目的即逻辑理论研究的思想,使他没有局限于使用代数的符号,而又采取了图表(graph)符号,进而形成了他著名的存在判断图表系统α、β、γ,并最终达到了“大逻辑”(a broad sense of logic)--“符号(sign)”或“象标(iconicity)”的理论的认识。其存在判断图表(existential graphs)理论,在近年来基于计算机的图表推理表示法发展之后,被应用于人工智能领域,甚至IBM的一研究者John Sowa,奠基于这一理论又发展出了一概念图表(conceptual graphs)。
上述Peirce的一系列观点,在今天处于逻辑科学前沿的Hintikka、J.V.Heijenoort等人那里得到了热烈呼应,他们把Peirce称为语言的模型论观点的一标准成员(integral member)来对待,并把他与Husserl并提,用来对抗由Frege到Heidegger的“作为语言的逻辑(logic as language)”的传统(其核心观点是,现实世界是语言的唯一解释,不存在多数可能的世界,从而否定模态逻辑的合法性,否认真理的可判定性或主张“真”的无法言说(ineffable))。
主 要 参 考 文 献
Peirce,Charles Sanders Collected Papers Of Charles Sanders Peirce edited by Charles Hartshorne and Paul Weiss The Belknap Press Of Harvard University Press ,1931-1935.
Peirce,Charles Sandes Writings of CHARLES S. PEIRCE ( A Chronological Edition ) edited by Edward C. Moore ,Indiana University Press 1984.
Peirce,Charles Sanders logic , symbolic logic 词条&nbs
p;Dictionary of Philosophy and Psychology edited by James Mark Baidwin, The Macmillan Company, 1925.
Peirce,Charles Sanders Philosophical Writings of Peirce selected and edited by Justus Buchler, Dover Publications,Inc.,1955.
Hintikka,Jakko Lingua Universalis vs. Calculus Ratiocinator Kluwer Academic Publishers,1997.
相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板
《Peirce*逻辑代数中的几个符号及其它(第3页)》