方军雄(复旦大学管理学院会计系)
到1993-1995年和2000年样本较少,以及1998年开始上市公司必须编报现金流量表,分年度检验只针对1996-1999年影响利润类型,并且将1996-1997、1998-1999年合并。
(2) 以影响利润的财务欺诈类型为研究样本,筛选出与财务欺诈相关性最为显著的6个财务指标为鉴别模型的判定指标,分别采用线性概率模型(LPM)和Logistic模型,建立和估计财务欺诈鉴别模型,并比较这两种模型的鉴别效果。
(三)资料来源与统计工具
本研究样本数据来源于证监会网站和三大证券报,各个上市公司的年报资料来自香港理工大学中国会计与金融研究中心和深圳市国泰安信息技术有限公司联合开发的《中国股票市场研究(CSMAR)数据库》,该数据库具有数据准确、可靠、规范和原始的优点。使用的统计软件为SPSS统计软件包。
实证结果与分析
(一)财务欺诈公司与非财务欺诈公司的描述性统计和配对检验
综合分析表3和表4,除AQUALITY 、MARGIN与EXPENSE预期符号不符以外,其它变量基本上与预期相符。非财务欺诈公司的毛利率(MARGIN)高于财务欺诈公司,而两项费用率(EXPENSE)却显著低于财务欺诈公司(0.10水平),可能的原因是选取的配对公司的盈利能力高于财务欺诈公司。同时,我们发现财务欺诈公司具有高资产负债率、低速动比率,以及高应收款项比率和低应收款项周转率的特点(分别在0.10、0.05水平上显著)。也就是说,高资产负债率、低速动比率,以及高应收款项比率和低应收款项周转率的公司属于财务欺诈的高危群体。
(二)多元线性鉴别模型的建立和评价
评价模型优劣的标准大体有三:简易性(simplicity)、准确性(accuracy)和通用性(generality),变量过多、过于复杂的模型,不仅违背成本效益原则,而且过多的变量可能损害模型的预测价值。我们首先运用线性概率模型,以各年影响利润的样本数据按照stepwise方式进行逐步回归,从13个财务指标当中选取若干变量。选择标准为:F值概率值小于0.35时进入,大于0.40时剔除。跑完逐步回归以后,依次得到RRATE、EXPENSE 、AQUALITY、OTAX、 QUICK等5个变量。另外,从表4看,财务欺诈公司与非财务欺诈公司的RECTURN、LEV存在显著差异,但是,RECTURN与RRATE显著负相关(0.0001水平);虽然EQUALITY通常较能反映公司的盈利质量,但是由于该指标1998年以后才开始提供,数据过少,所以我们予以舍弃。最后,我们选取了RRATE、EXPENSE 、AQUALITY、OTAX、 QUICK、LEV等6个指标作为建立多元鉴别模型的变量。由表5看,方差膨胀因子VIF都小于10,可以认为6个变量之间不存在显著的多重共线性。
建立和估计财务欺诈模型时,我们以1996-1998年的数据作为样本,1999年的公司作为评价模型准确性的数据。
1、线性概率模型(LMP)
根据上述6个财务指标以及1996-1998年财务欺诈公司和配对公司的数据,我们进行线性概率模型回归,回归结果列于表6。从中我们得到财务欺诈公司鉴别模型:
上述模型是以31家财务欺诈公司和60家非财务欺诈公司的数据作为因变量,其中财务欺诈公司取值为1,非财务欺诈公司取值为0。因此,从模型构建看,0.34是最佳的财务欺诈判定点,即某公司的数据代入模型得到的数值大于0.34时,判定为财务欺诈;否则,为非财务欺诈。模型判定结果见表7:
2、Logistic模型
我们仍旧以上述7个财务指标以及1996-1998年财务欺诈公司和配对公司的数据为研究样本,进行二元(binary)Logistic模型回归,得到的回归结果见表8。财务欺诈公司鉴别模型表示如下:
即根据回归得到的财务欺诈鉴别方程,以0.34为最佳判定点,模型判定结果见表9。
从表10可知,两种鉴别模型各有优劣势。从回判效果看,LMP模型略优于Logistic模型;但是,从预测结果看,无论是二类错误率和整体误判率(一类错误率相同),Logistic模型都显著比LMP模型好。同时,对于投资者来说,一类错误所可能产生的损失远远大于二类错误的风险,因为由于一类错误而进行的投资决策可能导致实实在在的投资损失,二类错误至多只是丧失一个可能的获利机会。所以,以一类错误率为标准,Logistic模型对于鉴别财务欺诈公司比LMP模型好。
结
通过对我国历年来被证监会查处的财务欺诈公司的实证研究,发现财务欺诈行为的确会使得 “企业的财务结构出现异常的状态”(Joseph T. Wells,2001),表现在财务指标上,就是某些财务指标显著的异于同类公司。这些能够显著显示财务欺诈征兆的财务指标包括:应收款项比率、应收款项周转率、资产负债率、速动比率、主营业务税金及附加比率、资产质量、管理费用和销售费用率。
我们以上述其中6个指标作为变量,分别应用LPM模型和Logistic模型构建了财务欺诈鉴别模型,两者的误判率都小于36%。从一类错误看,Logistic模型鉴别效果优于LPM模型。值得指出的是,我们在根据估计出的模型鉴别上市公司是否存在财务欺诈时,简单地选取0.34作为欺诈临界点,现实中财务欺诈公司分布概率远远不是那么简单,虽然经验研究表明(陈小悦、肖星、过晓艳,2000;吴东辉,2001;杜滨,2001;章永奎、刘峰,2002)我国上市盈余管理现象比较严重,但是足以招致证监会公开查处的公司比较有限,所以财务欺诈公司概率可能小于0.34,这是后续研究应当予以关注的。
财务欺诈公司与非财务欺诈公司在财务指标上的确存在较大差异,但是我们不能仅仅根据某些财务指标存在差异,就简单断定该公司存在财务欺诈,因为财务指标的异常只是预示该公司可能存在财务欺诈,充其量只是一个警示信号,它旨在提醒使用者根据财务指标异常提供的信息,进一步收集其他信息来予以证实,例如会计师事务所是否更换,更换的理由是否正常?管理层是否出现非正常的变更?这一点,中注协颁布的《审计技术提示第1号——财务欺诈风险》为我们提供了指南。
文/方军雄(复旦大学管理学院会计系)(第2页)
本文链接地址:http://www.oyaya.net/fanwen/view/145747.html
(2) 以影响利润的财务欺诈类型为研究样本,筛选出与财务欺诈相关性最为显著的6个财务指标为鉴别模型的判定指标,分别采用线性概率模型(LPM)和Logistic模型,建立和估计财务欺诈鉴别模型,并比较这两种模型的鉴别效果。
(三)资料来源与统计工具
本研究样本数据来源于证监会网站和三大证券报,各个上市公司的年报资料来自香港理工大学中国会计与金融研究中心和深圳市国泰安信息技术有限公司联合开发的《中国股票市场研究(CSMAR)数据库》,该数据库具有数据准确、可靠、规范和原始的优点。使用的统计软件为SPSS统计软件包。
实证结果与分析
(一)财务欺诈公司与非财务欺诈公司的描述性统计和配对检验
综合分析表3和表4,除AQUALITY 、MARGIN与EXPENSE预期符号不符以外,其它变量基本上与预期相符。非财务欺诈公司的毛利率(MARGIN)高于财务欺诈公司,而两项费用率(EXPENSE)却显著低于财务欺诈公司(0.10水平),可能的原因是选取的配对公司的盈利能力高于财务欺诈公司。同时,我们发现财务欺诈公司具有高资产负债率、低速动比率,以及高应收款项比率和低应收款项周转率的特点(分别在0.10、0.05水平上显著)。也就是说,高资产负债率、低速动比率,以及高应收款项比率和低应收款项周转率的公司属于财务欺诈的高危群体。
(二)多元线性鉴别模型的建立和评价
评价模型优劣的标准大体有三:简易性(simplicity)、准确性(accuracy)和通用性(generality),变量过多、过于复杂的模型,不仅违背成本效益原则,而且过多的变量可能损害模型的预测价值。我们首先运用线性概率模型,以各年影响利润的样本数据按照stepwise方式进行逐步回归,从13个财务指标当中选取若干变量。选择标准为:F值概率值小于0.35时进入,大于0.40时剔除。跑完逐步回归以后,依次得到RRATE、EXPENSE 、AQUALITY、OTAX、 QUICK等5个变量。另外,从表4看,财务欺诈公司与非财务欺诈公司的RECTURN、LEV存在显著差异,但是,RECTURN与RRATE显著负相关(0.0001水平);虽然EQUALITY通常较能反映公司的盈利质量,但是由于该指标1998年以后才开始提供,数据过少,所以我们予以舍弃。最后,我们选取了RRATE、EXPENSE 、AQUALITY、OTAX、 QUICK、LEV等6个指标作为建立多元鉴别模型的变量。由表5看,方差膨胀因子VIF都小于10,可以认为6个变量之间不存在显著的多重共线性。
建立和估计财务欺诈模型时,我们以1996-1998年的数据作为样本,1999年的公司作为评价模型准确性的数据。
1、线性概率模型(LMP)
根据上述6个财务指标以及1996-1998年财务欺诈公司和配对公司的数据,我们进行线性概率模型回归,回归结果列于表6。从中我们得到财务欺诈公司鉴别模型:
上述模型是以31家财务欺诈公司和60家非财务欺诈公司的数据作为因变量,其中财务欺诈公司取值为1,非财务欺诈公司取值为0。因此,从模型构建看,0.34是最佳的财务欺诈判定点,即某公司的数据代入模型得到的数值大于0.34时,判定为财务欺诈;否则,为非财务欺诈。模型判定结果见表7:
2、Logistic模型
我们仍旧以上述7个财务指标以及1996-1998年财务欺诈公司和配对公司的数据为研究样本,进行二元(binary)Logistic模型回归,得到的回归结果见表8。财务欺诈公司鉴别模型表示如下:
即根据回归得到的财务欺诈鉴别方程,以0.34为最佳判定点,模型判定结果见表9。
从表10可知,两种鉴别模型各有优劣势。从回判效果看,LMP模型略优于Logistic模型;但是,从预测结果看,无论是二类错误率和整体误判率(一类错误率相同),Logistic模型都显著比LMP模型好。同时,对于投资者来说,一类错误所可能产生的损失远远大于二类错误的风险,因为由于一类错误而进行的投资决策可能导致实实在在的投资损失,二类错误至多只是丧失一个可能的获利机会。所以,以一类错误率为标准,Logistic模型对于鉴别财务欺诈公司比LMP模型好。
结
论与建议
通过对我国历年来被证监会查处的财务欺诈公司的实证研究,发现财务欺诈行为的确会使得 “企业的财务结构出现异常的状态”(Joseph T. Wells,2001),表现在财务指标上,就是某些财务指标显著的异于同类公司。这些能够显著显示财务欺诈征兆的财务指标包括:应收款项比率、应收款项周转率、资产负债率、速动比率、主营业务税金及附加比率、资产质量、管理费用和销售费用率。
我们以上述其中6个指标作为变量,分别应用LPM模型和Logistic模型构建了财务欺诈鉴别模型,两者的误判率都小于36%。从一类错误看,Logistic模型鉴别效果优于LPM模型。值得指出的是,我们在根据估计出的模型鉴别上市公司是否存在财务欺诈时,简单地选取0.34作为欺诈临界点,现实中财务欺诈公司分布概率远远不是那么简单,虽然经验研究表明(陈小悦、肖星、过晓艳,2000;吴东辉,2001;杜滨,2001;章永奎、刘峰,2002)我国上市盈余管理现象比较严重,但是足以招致证监会公开查处的公司比较有限,所以财务欺诈公司概率可能小于0.34,这是后续研究应当予以关注的。
财务欺诈公司与非财务欺诈公司在财务指标上的确存在较大差异,但是我们不能仅仅根据某些财务指标存在差异,就简单断定该公司存在财务欺诈,因为财务指标的异常只是预示该公司可能存在财务欺诈,充其量只是一个警示信号,它旨在提醒使用者根据财务指标异常提供的信息,进一步收集其他信息来予以证实,例如会计师事务所是否更换,更换的理由是否正常?管理层是否出现非正常的变更?这一点,中注协颁布的《审计技术提示第1号——财务欺诈风险》为我们提供了指南。
文/方军雄(复旦大学管理学院会计系)(第2页)
《方军雄(复旦大学管理学院会计系)(第2页)》