基于ADuC812的智能无功补偿控制器的研制
系统对Iq的处理原理可借助于图2来说明:当某一电容器组被投入电网后,负载的电流就由网端电流is和电容器补偿电流ic共同承担。Ic为一纯无功电流,若能使ic=iq,则is=il-ic=ip,实现了无功功率的完全补偿。由无功补偿原理可知,全补偿所需投或切的电容器容量为
,式中ω=314,U为电网电压有效值。若IqM为正,则ΔC为负,表明系统处于过补偿状态,应切除相应容量的电容器;若IqM为负,则ΔC为正,表明系统处于欠补偿状态,应增投相应容量的电容器。需要注意的是,要根据ΔC确定需投入或切断的电容器组时,为提高动态补偿的精确性,应将电容器的标称容量换算成实际电网电压下的实际容量。
2.3 过零检测电路
图3为按上述思想设计的电压正向过零检测电路。220V的交流电首先经过电阻分压,然后进行光电耦合,假设输入的是A相电压,则在A相电压由负半周向正半周转换时,图中三极管导通并工作在饱和状态,会产生一个下降沿脉冲送入ADμC812的INT0引脚使系统进入中断程序。微机系统进入中断程序后,发出采样命令并从采样保持器读取无功电流值Iqm,这个无功电流即为A相的无功电流,经过1/4个周期电压达到最大值,此时对电压进行采样,得到UM,由UM=1.414U可以得到电压有效值U。
由于A、B、C三相交流电之间的相位差是2π/3,如图4所示,所示各相电压的正向过零时刻和达到最大值时刻可以精确地计算得到,在t1时刻微机系统运行中断程序,采集A相的无功电流,并同时启动定时程序,在t2时刻采集A相电压最大值,以此类推,在t3时刻测得B相无功电流最大值,在t4时刻测得B相电压最大值,在t5时刻测得C相无功电流最大值,在t6时刻测得C相电压最大值,然后系统便进入下一个采样循环。由于单片机的额定工作频率为12MHz,远大于电网基波频率50Hz,因此系统在各个采样间隔内完全有充足的时间对采样结果进行处理,并以尽可能少的硬件投入,实现了系统所需各种电参量的检测。
2.4 键盘和液晶显示电路
本系统控制器的键盘采用中断工作方式,这四个按键分别是“设置”、“加”、“减”和“切换”,通过“与”门电路把这些低电平触发信号合成一起输入到ADμC812单片机的INT1端口。有键按下时,系统进入键盘中断服务程序,判断哪个键被按下,并执行相应的操作。通过按“设置”键可以查询系统的工作状态、电流和电压的超限保护值、电网参数及系统的工作模式(即根据电网的实际情况,设置为三相共补或分相补偿)等;按“切换”键可进行手动/自动补偿切换;相应时刻按“加”、“减”键可以修改电流和电压的保护值,以及投切电容。
液晶显示电路采用串行输入的4字节数码显示器。在无按键按下时,显示电网的功率因数;有按键按下时根据其功能不同而显示不同的数据。
3 控制器的软件设计
控制器的软件由Franklin C51编译器编写而成,软件流程如图5所示。系统上电后,首先进行初始化,对寄存器和I/O端口进行设置,然后执行自检程序,自检测无误后开放外部中断,等待A相的正向过零中断信号和用户操作键盘的中断信号。当接收到过零中断时,系统按一定的时序检测无功电流和电压值,分别计算各相无功功率的盈缺量,得到各相的应该投切的电容量ΔC,驱动固态继电器投切电容器,执行完毕后退出中断,等待下一个中断循环。系统在每个中断循环内还把测得的电流值和电压值与设定的超限保护值进行比
《基于ADuC812的智能无功补偿控制器的研制(第2页)》