保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

噪声图像的分形压缩编码研究


摘要:分形图像压缩编码是近年来产生的新的图像压缩编码技术,由于其具有极高的压缩比而获得广泛的关注。主要讨论了图像小波域的去噪问题以及如何将小波域的去噪与分形图像压缩方法结合起来,以获得良好的编码效率和图像质量。

    关键词:分形编码 图像压缩 噪声

分形的概念是由数学家B.Mandelbrot于1975年提出的,他把分形定义为“一种由许多个与整体有某种相似性的局部所构成的形体”。分形概念的提出及分形几何学的创立为描述客观世界提供了更准确的数学模型。图形学是几何学的延伸与发展,分形模型研究成果的积累形成了新的图像学分支——分形图像学。而基于分形的图像编码方法实质是对图像中一个或多个相对大的部分施行压缩变换来逼近图像的每一部分。1990年,A.Jacquin提出了全自动的可行的分形压缩编码方法,由于其可以获得极高的压缩比而得到广泛关注。在实际的图像编码过程中,原始图像经常被噪声(最常见的是高斯白噪声)污染。由于噪声的存在,一方面使得图像编码的时间延长,另一方面,降低了图像的信噪比,图像质量明显下降。因此,笔者试图寻找一种方法,在不影响图像压缩比的前提下去噪,从而提高编码效率和图像质量。

1 分形图像压缩编码方式

1.1 拼接定理(Collage Theorem)

拼接定理是分形图像压缩技术的核心。

设{RT:wi,i=1,2,…,p}是T维的收缩仿射变换集合,即IFS、R为实数集。给定V∈RT,ε>0,如果IFS中最大的收缩因子s∈(0,1),且满足:

h(V,W(V))<ε

则有:h(V,A)<ε/(1-ε)

其中,A为IFS的吸引子,h(A,B)为Hausdorff距离。拼按定理给出了数集V与吸引了IFS之间逼近程度的一个上限值,即拼接误差的上限值。

拼接定理提供了用IFS进行图像压缩的理论依据。对于一般的灰度图像,可认为是一张原始灰度曲面(R3空间上的一个紧子集)进行抽样和量化得到的。尽管无法使原理图像(V)成为某一个迭代函数系统IFS的吸引子,但是如果能找到一组收缩仿射变换wi,i=1,2,…,p,使(凹丫丫范文网fanwen.oyaya.net收集整理)与V充分地接近,那么由拼接定理可知V是该IFS(RT:wi,i=1,2,…,p)对应吸引子的良好逼近。

在利用收缩仿射变换{RT:wi,i=1,2,…p}结图像进行解压缩时,迭代过程与初始条件无关。也就是说,对任意给定的初始图像数据进行多次迭代,就可以完成对原始图像的重构。

1.2 分形图像压缩编码的实现

所谓局部IFS(LIFS)是指其变换的定义域由原来的整个区域放宽为全部区域的某些子集。通过将理论从全局扩展到局部,可以得到一种全自动的分形压缩方案,Jacquin方法的实质是固定方块定义域块的大小并限制仿射变换为一定的形式,然后搜索图像录找与定义域块相匹配的值域块(它的大小是定义域块的4倍),搜索中要配合Jacquin提出的八种对称变换算子对值域块进行变换。

编码压缩过程:把原始图像分成互不重叠的定义域块(Range块),这些块能将原始图像全部覆盖,每一个Range块大小均为B×B;每一Domain埠的大小均为D×D,且通常D=2B。为使压缩后重构图像的质量更好,相邻 的Domain块之间在水平及垂直方向均有重叠,水平及垂直方向上位移量为B。依次对每一个Domain块中相邻的4个灰度值求平均,于是每一个大小为D×D(2B×2B)Domain块就变成了大小为B×B的Sub_Domain块。之后利用最小二乘法,并配合八种对称变换算子,将收缩后的Domain块(Sub_Domain块)与Range块进行匹配运算:

若计算出的MSE小于给定误差,则认为匹配成功,否则继续匹配,在找到最佳值域块及仿射变换后,需要存储其参数以便传输。这些参数包括:匹配成功的Domain块块号、Jacquin变换算子的编号以及比例因子S、偏移量O。

《噪声图像的分形压缩编码研究》
本文链接地址:http://www.oyaya.net/fanwen/view/146924.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。