目标跟踪算法在红外热成像跟踪技术上的应用
工控机的数据处理能力有限,需要针对红外热成像跟踪技术的特点来简化数学模型,选定计算量最小的计算公式。目标跟踪算法用来确定目标位置,可以用匹配误差的相对大小作为目标判别的依据,误差最小的位置就是目标位置,需要考虑绝对相似程度。
公式(1)~(5)都能够真实反应模板的相对匹配程度,选择计算量最小、效率最高的公式(1)作为原始数学模型。匹配点位置算法完成整个匹配区域内的小匹配误差点检索,表示为公式(6):
变量K、L为匹配区域尺寸;M、N为模板尺寸。
2.2 模板尺寸
模板尺寸对系统性能和计算量的影响不容小觑。模板过大导致动态特性变差;过小又会减少目标的特征数据量,降低匹配的敏感程度,增大目标检测难度。实际操作中,模板尺寸设置为32×16时的效果非常理想。
2.3 匹配区域
不同的应用环境下,对匹配区域和实时性要求也不尽相同。光电探测设备需要在视频图像采集周期内(20ms)完成数据实时处理。由于目标在两场视频图像之间的移动量较小、特征变化不大,匹配区域可以大大缩小。
匹配区域太小会导致目标动态特性变差,过大又会导致计算量大幅度增加,具体选择需要权衡设备参数来决定。由于CCIR制式视频信号是隔行扫描,系统出于实时性考虑,数据以场为单位处理,导致图像比例为2:1状态。为了保持水平、垂直方向的动态特性一致,图像匹配区域也按2:1比例选择。
在满足实时性要求的情况下,选择相对较大的匹配范围,可提高设备的动态特性,从表1实测数据可以看出,选择匹配区域100×50点、模板32×16点时,动态范围为69×35,时间消耗为13ms。光电探测设备系统目标动态特性要求处理区域不小于40×20点。可见以上选择可以很好地满足动态特性和实时性要求。
表1 匹配区域与完全优化处理时间对比表
*数据测试平台为:PIII933CPU、256MB内存、Win2000操作系统
**数据是在加入算法优化、模板尺寸为32×16的情况下获取的。
3 数学模型优化方法
数学模型结合选择的模板和搜索区域大小,可以知道模板最佳匹配点计算公式如下:
由公式(7)可以看出,程序需要进行大量的循环计算,整体运算量仍然不小,需要进一步优化,减少处理时间。运用如下优化算法进一步减少实际运算量。
3.1 粗精匹配结合
观察实际模板匹配运算结果可以发现,匹配点附近的匹配误差迅速下降,有显区别于其它位置。针对这一特点,采用粗精匹配结合的算法迅速锁定匹配点大致区域,可大大降低整体匹配次数。
具体实现方法:先跳动着隔几个点进行一次粗匹配,大致框定匹配区域,然后在附近区域逐一检索获得最佳匹配点。运算量可减少到三分之一以下,且目标提取效果相当好。
《目标跟踪算法在红外热成像跟踪技术上的应用(第2页)》