浅谈药物传输系统研究的几个热点
2.1 靶向给药制剂的分类
2.1.1 按给药途径分 全身作用靶向给药制剂,即通过口服或注射等方式给药后,能使药物导向所需发挥作用的部位;非全身作用的靶向给药制剂,即局部用药后,药物就在该部位发挥治疗作用。
2.1.2 按作用方式分 主动靶向(active targeting)给药制剂具有识别靶组织或靶细胞的大分子,以其为载体的能力;被动靶向(passive targeting)给药制剂,像脂质体、微球、毫微粒、乳剂或复乳等微粒载体制剂,对靶细胞并无识别能力,但可经血循环到达它们不能通过的毛细血管床,并在该部位释药。
2.1.3 按药物作用水平分 一级靶向,如微粒载体制剂只能将药物输送至特定的器官;二级靶向,系指能将药物输送至某器官的特定部位;三级靶向,系指能将药物输送至特定部位的病变细胞内。如若能将药物制成三级靶向制剂,则可使药物在细胞水平上发挥作用,药物可专门攻击病变细胞,对正常细胞没有或几乎没有不良的影响,可使药物的疗效达到最理想的程度。
2.1.4 按物理形态分 水不溶性制剂指脂质体、微球、毫微粒、乳剂或复乳等水不溶性微粒载体制剂;另一类是水溶性的特异或非特异性大分子载体制剂,包括合成大分子与天然的生物大分子(如聚多糖、抗体、核糖、核酸等)载体制剂,药物的靶向主要凭借载体系统来实现,故又可称为药物载体系统(drug-carrier systems)。
文献资料经常采用主动靶向与被动靶向给药制剂的分类法。
在以往研究中,被动靶向给药研究较多,如脂质体等微粒载体制剂,进入机体后,可按其粒径大小分布于不同的脏器:静脉注射7~12 μm的微粒,可被肺部机械性截滤而摄取;动脉注射大于12 μm的微粒,可阻滞于毛细血管床而到达肝、肾荷瘤器官中;静脉、动脉或腹腔注射0.1~0.2 μm的微粒,很快被网状内皮系统(RES)的巨噬细胞吞噬最终到达肝脏枯否氏细胞的溶酶体中。
2.2 靶向给药系统发展趋势 为进一步提高药物的靶向性[14,15],科学家们又将能识别靶细胞的大分子连接于药物载体的表面(或与药物分子直接相联),如:将单克隆抗体连接于含药脂质体(或毫微粒)的表面,可提高药物对肿瘤细胞的靶向性,但因实体瘤内血供差,它向瘤体内部靶向的效果亦差;进而研制人鼠嵌合抗肿瘤细胞核单克隆抗体(chTNT)脂质体,使其靶向实体瘤内的效果比单抗脂质体大为提高,这种免疫型脂质体作为药物传输系统的研究报道虽为数不多,但目前已受国内外学者的普遍关注。
研究表明多数肿瘤细胞表面上的叶酸受体,在数量和活性上均比正常细胞大得多,因而可制备叶酸脂质体,它以叶酸受体为介导,提高了脂质体对肿瘤细胞的靶向性。
叶酸脂质体易导向“健康”肿瘤细胞膜,故为非晚期肿瘤治疗药物的优良传输系统;chTNT-脂质体易穿透“不健康”肿瘤细胞膜而靶向细胞核,故为晚期肿瘤治疗药物的优良传输系统,这样两种不同的靶向脂质体可用于治疗不同生长期的广谱肿瘤。
1966年Morell等发现哺乳动物的肝实质细胞膜表面存在去唾液酸糖蛋白受体(Asialoglycoprotein receptor,ASGPr),该受体能专一性地识别以半乳糖为端基的糖蛋白,因而以这样的糖蛋白为载体,可将药物导向肝实质细胞(肝非实质细胞(枯否氏细胞和内皮细胞)的表面有甘露糖受体),并主动向肝细胞的溶酶体转运,而受体本身又能重新回到细胞膜。
目前国内外对受体型与免疫型靶向制剂研究报道较多,通过这两种介导方式以提高药物的靶向性,使药效发挥得最好,不良反应降至最小。
还可将药物制成磁性制剂,以提高药物的靶向性,如含超微磁粒的盐酸阿霉素蛋白微球,动脉注射后,在靶区体外磁场的引导下,其靶区药物浓度比静脉注射同剂量的游离阿霉素高出100倍。临床试验表明,磁性制剂中的磁性超微粒子可以定期安全地被排出体外。但尚存在磁场的强度、梯度与“聚焦”问题,磁场是否会改变红细胞的机能和改变血流的方式等问题,均有待进一步研究。
低密度脂蛋白(LDL)[16]是存在于哺乳动物血浆中的脂蛋白。人血浆中LDL可携带血浆胆固醇总量的2/3,是细胞外源性胆固醇的主要来源。LDL体内代谢主要经由细胞膜表面的特异性LDL受体识别,从而进入细胞内被利用,在细胞内的内源性胆固醇不能满足需要时,通过调节细胞膜上LDL受体的数目和活性,以增加对LDL的吸收而增加对外源性胆固醇的利用。LDL主要经肝内特定的LDL受体清除。癌细胞常具有内源性胆固醇合成障碍,且由于其大量增殖复制,细胞膜对胆固醇的大量需求,细胞表面LDL受体的活性及数量在某些癌细胞中高出正常细胞20倍以上,因此,采用LDL荷载抗癌药物,可大大提高对某些癌细胞的靶向性。LDL是内源性脂蛋白,将它作为药物载体,即可避免脂质体、单克隆抗体等在体循环中被网状内皮系统迅速清除的问题,又可弥补一般载体存在的靶向性差的不足,这对解决当前抗癌药物化疗中存在的靶向性差、不良反应大的问题具有重要意义。
在细小的药物载体微粒进入体循环时易被RES的巨噬细胞吞噬,从而影响药物到达所需治疗的靶区,故此,回避RES的吞噬作用已成为药物载体靶向性的重点课题之一[17,18]。若将空白载体先用RES饱和,然后再给含药载体,即可直达靶区,但此举会使机体免疫功能受损,并伴发其他疾病,故此法不可取;若以机体内源性物质如LDL为载体,则可回避RES的吞噬。近年来研究较多的是回避RES的免疫脂质体(RES-avoiding immunoliposomes),即在含药脂质体的表面既有IgG免疫抗体,又裹以PEG,见图2。这样既回避了巨噬细胞的吞噬,又可将药
物导向靶细胞。PEG可回避RES吞噬的机制虽未完全搞清,但这与PEG分子具独特结构有关,即与其强亲水性和有一定的鞣革 刃性有关,推测PGE具有模仿白细胞、红细胞表面存在的多糖基因的功能。又如回避RES的非离子表面活性剂囊泡(nonionic surfactant vesicles,NsVs即Niosomes),由PEG2000-胆固醇衍生物(PEG-ch)制成的长循环阿霉素非离子表面活性剂囊泡(long circulation adriamycin NsVs,L-ADM-NsVs),其表面上的PEG层增强了该囊泡的亲水性,从而减少RES的吞噬,延长血中循环时间,提高靶向性和抑瘤活性。
参考文献
1 Ansel HC,Popovich NG,Allen LV.Pharmaceutical dosage forms and drug delivery systems.Williams & Wilkins Baltimore.6th ed.New York:Marcel Dekker Inc,1995.218~220
2 Deshpande AA,Shah NH,Rhodes CT,et al.Development of a novel controlled-release system for gastric retention.Pharm Res,1997,14(6)∶815
3 Shalaby WSW,Blevins WE,Park K.In vitro and in vivo studies of enzyme-digesbible hydrogels for oral drug delivery.J Controll
《浅谈药物传输系统研究的几个热点(第2页)》