空时网格编码和OFDM相结合的通信系统性能仿真分析
关键词:空时网格编码 OFDM 高斯白噪声信道 频率选择性衰落信道
Vahid Tarokh等提出了空时网格编码系统模型,给出了编码设计准则和构造方法,接收端采用Viterbi算法进行译码。空时网格编码可以有效地提高信道容量,同时还具有空间分集增益和编码增益;OFDM可以有效对抗多径干扰,消除符号间干扰。因此,广大学者和研究人员普遍倾向于在第四代移动通信中采用0FDM和空时编码相结合的通信系统。本文就空时网格编码和0FDM相结合的通信系统性能进行了理论分析和仿真分析。
1 空时网格编码和OFDM相结合的理论基础
空时网格编码的译码是假设信道为准平坦衰落信道,即在一个发送信号的周期内,信道的衰落因子保持不变;只有在这个基础上才能采用最大似然译码。然而在多径信道下,只有当:Bs<<Bc,Tc,Ts>>σr,其中Bs是信号带宽,Bc是信道的相干带宽,Ts是信号带宽的倒数,σr是时延扩展,才能假设信道是乎坦衰落信道。当发送的数据速率较低时,完全可以满足以上条件;但当发送的数据速率较高时,这时:Bs>Bc,Ts<σr,信道为频率选择性衰落信道,显然再也不能假设信道为平坦衰落信道了,这样就无法直接采用空时网格编码。那么在高速无线通信中如何采用空时编码呢?这时可以利用OFDM。高速的数据比特经过OFDM调制后,转变成周期较长的0FDM码元,然后再送入信道。由于OFDM码元周期较长,它完全可以满足平坦衰落信道的条件,这时多径信道为平坦衰落信道,可以采用空时网格编码。
图1
2 空时网格编码和OFDM相结合的通信系统
空时网格编码和0FDM相结合通信系统发射端框图如图1所示。将要发送的数据信息比特经过串/并变换,形成n路并行的数据比特流。这n路并行的数据比特流送入n个空时网格编码器。在文献[1]中给出了空时网格编码器的构造。每一个空时网格编码器同时输出2路数据信息:D1i(t)和D2i(t)(i=1,2,……n;代表第i路编码器输出),其中D1i(t)对应第一个发射天线的数据信息,D2i(t)对应第2个发射天线的数据信息。然后n路的D1i(t)(i=1,2……,n)经过傅立叶逆变换,加上循环前缀形成一个OFDM码元。n路的D2i(t)(i=1,2,……,n)也经过傅立叶逆变换,加上循环前缀形成另一个OFDM码元。为了进行信道估计笔者引入了训练符号;训练符号经过串/并变换,形成n路并行的符号流;这n路并行的符号流被送入n个空时网格编码器。每个空时网格编码器同时输出 2路符号信息:T1i(t)和T2i(t)(i=1,2,……n;i代表第i路编码器输出)。n个T1i(t)和T2i(t)分别经过傅立叶逆变换,加上循环前缀后形成另外两个OFDM码元。然后按照图2的帧格式分别进行打包,打包后的数据经过数模变换形成s1(t)和s2(t),分别同时通过第1个发射天线、第2个发射天线发送出去。
采用图2所示的帧格式,发送的信号可以被表示为:
s(t)=(s1(t) s2(t)) (1)
信道冲激响应可以表示成以下的形式:
(凹丫丫范文网fanwen.oyaya.net收集整理)
其中αn表示第n条路径的衰落系数,Υn表示第n条路径的传播时延。当在接收端采用一副接收天线接收时,接收端的框图如图3所示,接收到的信号r(t)可以被写成:
其中,hij(t)(i=1,2;j=1)为第i根发送天线到第j根接收天线之间的信道冲激响应;η(t)为高斯白噪声。接收到的信号r(t)经过模数变换、同步等辅助工作后,首先按照发送的帧格式拆包,分割出不同的信息。这些不同的信息都必须去掉循环前缀,经过傅立叶变换。其中训练符号被送入信道估计模块,进行信道估计。被估计出的各个子载波的信道衰落因子和数据信息一起被送入n个网格译码器,进行空时网格译码。这n个空时网格译码器的输出经过并/串变换形成需要的数据信息,进而输出。
《空时网格编码和OFDM相结合的通信系统性能仿真分析》