保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

高速PCB设计中的时序分析及仿真策略


信电路中很常见的TBI接口为例介绍源同步时序分析及仿真过程。TBI接口主要包括发送时钟和10bit的发送数据、两个接收时钟和10bit接收数据。RBC0、RBC1为两个接收时钟,在千兆以太网中,这两个时钟频率为62.5MHz,相差为180°,两个时钟的上升沿轮流用于锁存数据。根据数据手册的时序参数,代入上式可得:

2.5+?Tflt_clk _min-Tflt_data__settle_delay_max?-1-Tmargin>0

1.5+?Tflt_data__switch_delay min-Tflt_clk _max?-0.5-Tmargin>0

仿照前述分析方法:假设时钟、数据信号线的飞行时间严格相等,即时钟和数据完全匹配,然后分析它们不匹配带来的影响。上式变为?

1.5-Tmargin>0

1-Tmargin>0

可见,无论是建立时间还是保持时间都有很大的余量。经过仿真,发现数据和时钟完全匹配等长(以0.02ns匹配为例),仍有0.3ns的差别,即,

?Tflt_clk_min-Tflt_data_settle_delay_max?<0.3

?Tflt_data_switch_delay min-Tflt_clk_max?<0.3

取Tmargin=0.5ns得到时钟和数据的匹配为0.2ns,即数据和时钟的长度匹配不应超过0.2ns。

在实际仿真中首先就时钟和数据的信号完整性进行分析仿真,通过适当的端接匹配得到较好的接收波形。图3是一组无源端匹配和有源端匹配时钟线的不同仿真波形比较,从中可以看出首先进行信号完整性仿真的必要性。

在公共时钟同步中,数据的发送和接收必须在一个时钟周期内完成。同时器件的延时和PCB走线的延迟也限制了公共时钟总线的最高理论工作频率。故公共时钟同步一般用于低于200MHz~300MHz的传输速率,高于这个速率的传输,一般应引入源同步技术。源同步技术工作在相对的时钟系统下,采用数据和时钟并行传输,传输速率主要由数据和时钟信号间的时差决定,这样可以使系统达到更高的传输速率。笔者通过对宽带以太网交换机主机和子卡板进行信号完整性分析、时序分析及其仿真,大大缩短了产品的设计周期,通过分析仿真有效地解决了高速设计中出现的信号完整性、时序等方面的问题,充分保证了设计的质量和设计速度,真正做到了PCB板的一次通过。主板和子卡板目前已经通过调试,并顺利转产。


《高速PCB设计中的时序分析及仿真策略(第4页)》
本文链接地址:http://www.oyaya.net/fanwen/view/151665.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。