TMS320LF2407A在混合电压系统中的设计
关键词:逻辑电平 DSP控制器 电源 接口
随着便携式数字电子产品、数字式移动电话、手持式测试仪表等的迅速发展,要求使用体积小、功耗低、电池耗电小的器件,从而使得集成电路的工作电压已经从5V降到3.3V甚至更低,例如2.5V和1.8V。但是目前仍有许多5V电源的逻辑器件和数字器件可用,因此在许多设计中将会有3.3V逻辑器件和5V逻辑器件共存,而且不同的电源电压在同一电路板中混用。随着更低电压标准的引进,混合电压的系统将会代替单电压系统,并会在很长时间内存在。
1 TMS320LF2407A概述
TMS320LF2407A是TI公司推出的一款定点DSP控制器,它采用了高性能静态CMOS技术,使得供电电压降为3.3V,减小了控制器的功耗;40MIPS的执行速度使得指令周期缩短到25ns(40MHz),从而提高了控制器的实时控制能力;集成了32K字的闪存(可加密)、2.5K的RAM、500ns转换时间的A/D转换器,片上事件管理器提供了可以满足各种电机的PWM接口和I/O功能,此外还提供了适用于工业控制领域的一些特殊功能,如看门狗电路、SPI、SCI和CAN控制器等,从而使它可广泛应用于工业控制领域。
(凹丫丫范文网fanwen.oyaya.net收集整理)
然而,在实际的应用系统中,还需要对TMS320LF2407A进行必要的外围扩展,譬如程序区和数据区的扩展、CAN的驱动等,以满足整个应用系统的实际需要。
2 电源设计
TMS320LF2407A的工作电压是3.3V,而目前许多常用外围器件的主要工作电源通常是5V,因此以TMS320LF2407A为核心所构成的应用系统必然是一个混合电压系统。与完全的3.3V系统相比较,混合电压系统由于低电压器件的缺乏,显然有不少缺点。其中一个主要缺点就是对多电源的要求,一个典型的系统需要3V、5V、+12V/-12V,甚至更高的电压。设计的一个目标就是减少所需电源的数目,并减少产生这些电源电压所需器件的数目。为了减少多电源所需的额外器件的数目,不少厂家提供了产生多种电压的芯片。同时,随着技术的不断进步,将会出现更多的低电压器件,从而逐渐消除对多电源的要求和产生这些电源的花费和复杂性。 对于TMS320LF2407A应用系统而言,首先要解决TMS320LF2407A的电源问题。解决3.3V电源通常有以下几种方案。
2.1 电阻分压
利用电阻分压的方法比较简单,其原理如图1所示。但是,该电路实际的输出电压显然要小于3.3V,并且随着负载的变化,输出电压也会产生波动。另外,这种电路的功耗也比较大。然而,其成本比较低并且结构简单,可以作为一种应急的方案。对于低功耗的系统和对电源要求高的系统,不适合采用这种方案。
2.2 直接采用电源模块
考虑到开关电源设计的复杂性,一些公司如Agere(原来朗讯的微电子部)、Ericsson、Vicor等,推出了基于开关电源技术的低电压输出电源模块。这些模块可靠性和效率都很高,电磁辐射小,而且许多模块还可以实现电源隔离。这些电源模块使用方便,只需增加很少的外围元件,但是价格比较昂贵。
2.3 利用线性稳压电源转换芯片
线性稳压芯片是一种最简单的电源转换芯片,基本上不需要外围元件。但是传统的线性稳压器,如LM317,要求输入电压比输出电压高2V或者更大,否则就不能够正常工作。因此对于5V的输入,输出并不能够达到3.3V。面对低电源的需求,许多电源芯片公司推出了低电压差线性稳压器(LDO)。这种电源芯片的压差只有1.3V-0.2V,可以实现5V转3.3V/2.5V,或者3.3V转2.5V/1.8V等要求。LDO所需的外围器件数目少,使用方便、成本较低、纹波小、无电磁干扰。例如,TI公司的TPS73xx系列就是TI公司为配合DSP而设计的电源转换芯片,其输出电流可以达到500mA,且接口电路非常简单,只
《TMS320LF2407A在混合电压系统中的设计》