Linux系统下USB摄像头驱动开发
1.3 使用双帧缓冲提高效率
Linux系统中,文件操作通常是由read、write等系统调用来完成。这些系统调用在驱动中的解决方法就是用copy_to_u
ser()、copy_from_user()等函数在核态、户态内存空间中互相拷贝。但是对于大批量的图像数据,采用拷贝的方法显然会增加时间开销,因此用内存映射的方法解决。首先使用vmalloc()申请足够大的核态内存,将其作为图像数据缓冲空间,两个URB带回的图像数据在这里暂存;然后使用remap_page_range()函数将其逐页映射到用户空间中。户态的图像处理程序使用mmap()函数,直接读写核态图像缓冲内存,大大减少额外开销。
图2
图像数据的处理可能要花费比较长的时间,不同的算法对于数据保留时间的要求也不一样。因此可以申请两帧图像缓冲,在处理一帧图像的同时,将两个URB带回的数据全部填充到另一帧缓冲中,这样可以免去时间冲突上的麻烦。
值得注意的是:这种方法要求时刻持有当前帧的序号、每一帧的起始地址等信息,不能将两帧图像混淆。这些信息可以保存在保留内存中,当前帧的数据整理、序号改变在URB完成例程中实现。
2 V4L标准的改进
V4L标准目前已经发展到第二版V4L2,其基本思路与V4L相同。
2.1 标准分析
根据V4L标准,户态程序在需要一帧图像时,CPU的走向如图2。CPU按照123456的顺序完成一个循环。在这里,有一个细节被忽略:在完成例程中,也就是图2中步骤6,该URB被立刻发出,但是由于这时用户程序正在阻塞等待,没办法再次提出获得图像的申请,因此在判断有无新请求时,判断的结果必然是当前无请求,导致下一个URB带回的数据被驱动丢弃;由于核态、户态的切换需要一定的时间,加上户态多进程同步等开销,等到应用程序能够再次发出获得一副图像的申请时,已经有不止一个URB带回的数据被丢弃掉,这些URB包含的数据正好是新一帧图像的开始部分。因此驱动必须等到再下一帧图像才能保存数据、缓冲。这样凭白损失了一帧图像,帧速最少下降一半。
2.2 改进思路:不间断采集
为了解决这个问题,可以改进V4L标准作,使其增加新的功能:通过新的参数,让ioetl()函数通知驱动不间断采集、缓冲图像数据,轮流保存在两帧缓冲区中,并在一帧图像采集好后,设定“图像采集好”旗语。户态程序只需要发出一次“获得图像”请求,就可以通过阻塞等待该旗语,不断获得图像。在采集结束后,再次通过新的参数,让驱动停止缓冲即可。CPU工作流程图如图3。
图3
注意到图2、图3,两种“判断有无新请求”的不同,即可发现新方法假定一直有请求,因此不丢弃每个URB带回的数据,轮流保存在两个帧缓冲内。
V4L已经作为约定俗成的标准被内核支持,因此如果使用全新的参数,工作量将相当巨大,并且不能和现有的应用程序兼容。考虑到现有的图像采集应用程序使用VIDIOCMCAPTURE作为参数,并提供帧序号,要求驱动将图像保存到指定序号的帧缓冲内。由于驱动通常仅仅提供几帧缓冲,因此该序号不会大于某个数字,如10。因此可以继续使用VIDIOCMCAPTURE参数,搭配较大的序号来表示新增的功能,例如用10000和10001来分别表示开始和停止缓冲图像数据的要求。驱动在收到VIDIOCMCAPTURE要求后,检查这个序号。如果小于10000,则按照正常的方法处理,否则按照改进方法。这种思路可以有效解决兼容性问题。
2.3 实验结果
在赛扬366、USBl.1接口的计算机平台上,采用上述不间断采集改进V4L标准,配合双URB、双帧缓冲等方法后,帧速提高两倍有余,有效数据传输速度达960KB/s,接近等时传输方式下USB总线的带宽极限。
《Linux系统下USB摄像头驱动开发(第2页)》