多状态机的协同设计
传统上在系统级和寄存器传输级完成VHDL 的描述主要分以下几步:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 应用VHDL 语言完成描述。
使用XILINX的ISE6.1软件包的辅助工具STATECAD能加速有限状态机设计,大大简化状态机的设计过程,实现状态机设计的自动化。使用STATECAD进行状态机设计的流程如下:
(1) 分析控制器设计指标, 建立系统算法模型图;
(2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
(3) 在STATECAD中输入有限状态机状态图,自动产生VHDL模型描述,使用STATEBENCH进行状态转移分析,分析无误后使用导出VHDL模型块到ISE中进行仿真后综合,实现到CPLD或FPGA的映射。
设计人员的主要工作在第一步。第二步,第三步基本上可以通过STATECAD完成有限状态机的自动生成和分析,还可以利用分析结果来对被控对象的逻辑进行分析,改进,完善系统控制逻辑。
在需要并行处理的场合,往往需要采用多状态机来完成系统的控制任务,这时状态机之间的同步问题往往是设计者需要仔细考虑的问题。如果采用完全人工输入代码的方法来设计,往往力不从心。采用STATECAD完成整个控制逻辑的设计并对设计结果进行验证更能体现CAD设计方法的优势,加速产品开发进度,提高设计生产率。
下面以一个双状态机设计过程来介绍如何使用STATECAD进行多状态机的协同设计。
有二个状态机,一个负责对M0写,一个负责对M0读操作,为了简单起见,系统已经尽量简化了。
负责对M0写的状态机包括四个状态:
STATE0:写状态机复位后初始化;
write0:对M0写,写满4个转到m0full;
m0full:M0满状态;
m0writewait:等待。M0满时转入write0状态。
负责对M0读的状态机包括四个状态:
STATE1:读状态机复位后初始化
read0:对M0读,读4个转到m0empty
m0empty:M0空状态
m0readwait:等待。M0空时转入read0状态
负责对M0写的状态机必须知道M0是空的,而负责对M0读的状态机必须知道M0是满的才能读。读完了通知负责对M0写的状态机M0是空的,可以写了。二个状态机同时并行工作。M0写的状态机在写操作完了,就等待M0空。M0读的状态机在读操作完了,就等待M0满。在STATECAD中,状态本身可以作为其他状态机的转移条件。这也正是在进行多状态机的协同设计中最需要的功能,能大大方便多状态机的设计。
输入完状态图,就基本完成了状态机的设计过程。进行逻辑优化(工具自动进行逻辑优化)后,使用STATEBENCH进行状态转移分析。以下是自动状态转移模拟波形。
由以上的波形看到状态机的工作过程符合设计逻辑。对单独的器件操作也许不需要采用多状态机的设计方法,但在多器件需要并行工作时,
《多状态机的协同设计》