ARM922T核ZCP320A处理器PCI总线操作
器中则定义了该窗口转换到PCI空间后的基地址,该窗口的大小及窗口使能控制和地址转换使能控制。在从PCI 空间到PBUS空间的方向也定义了4个窗口,PCI寄存器窗口和PCI从设备窗口0/1/2。其中PCI寄存器窗口由一个寄存器(PCI_BSREG)来控制该窗口在PCI总线空间的基地址及窗口属性,而PCI 从设备窗口0/1/2则由两个寄存器来定义,即窗口基地址寄存器(PCI_BST0/1/2)和窗口控制寄存器(PCI_TI0/1/2)。在窗口基地址寄存器中定义了该窗口在PCI总线上的基地址及窗口属性(存储器或I/O空间是否可预取,是否可对32位的任一字节进行访问),而在窗口控制寄存器中则定义了该窗口转换到PBUS空间后的基地址及该窗口的大小窗口使能控制和地址转换使能控制。
2 PCI总线编程模式
PCI桥上的寄存器占了4K的空间,从偏移地址0x000到0xfff。其中0x000到0x0ff是PCI协议中的标准PCI配置寄存器。这部分的寄存器可以从COREBUS和PCI 总线上进行访问,在COREBUS上访问的时候是当作存储器访问,而在PCI总线上则只能通过配置访问来进行。
偏移地址从0x100到0x1ff是扩展的PCI寄存器,用来定义桥作为PCI从设备时的窗口以及一些其它的控制。其中0x120是锁寄存器,用来控制寄存器区的写访问。
偏移地址从0x200到0x2ff是COREBUS控制寄存器,用来控制COREBUS上的窗口和地址属性。即桥作为PCI主设备时使用该组寄存器。
偏移地址从0x300到0x3ff是错误检测和处理寄存器。这部分的寄存器是对桥的错误进行控制,对错误的状态进行检测并报告。
偏移地址从0x400到0x4ff是DMA控制器部分寄存器。这部分的寄存器是DMA的专用命令寄存器,用来控制和管理桥上的DMA的工作。
另外还有两个配置寄存器0xcf8配置地址寄存器和0xcfc配置数据寄存器。ARM CORE在COREBUS上通过对这两个寄存器的操作实现对外部的PCI设备的配置操作。
PCI寄存器区在COREBUS总线上的基地址是0xe0000000 ,而在PCI总线上的基地址是可配置的,在PCI_BSREG寄存器中配置。
桥上的寄存器既可以由ARM核在COREBUS上访问,也可以由外部的PCI主设备通过PCI总线访问。寄存器区有一个锁的机制,用来保护寄存器。锁可以保证在同一时间只有一个设备可以对寄存器区的值进行修改。当ARM CORE通过COREBUS来访问桥上的寄存器或外部PCI设备通过PCI总线访问桥上的寄存器的时候,必须先对寄存器进行锁定成功以后才能对寄存器进行写操作,而读操作则没有这个限制。锁机制的实现是通过锁寄存器REG_LOCK 来实现的。锁定的具体方法是:对锁寄存器偏移地址0x120写入0x1,然后通过读该寄存器来查看加锁是否已经成功。如果读得的该寄存器的值是0x1,则说明已经锁定了桥上的寄存器区,对寄存器的配置就可以进行了。而如果读得的结果是0x0的话,说明锁定失败。对于寄存器读操作来说,没有加锁的限制。因为读操作不改变寄存器的值。当对寄存器配置结束后必须消除对寄存器区的锁定,这样其它的设备才可以对寄存器进行配置。具体方法是对锁寄存器0x120写0x0。
3 PCI主设备工作模式
由于ZCP320A处理器带有PCI总线接口,所以我们设计一般是处理器上集成的PCI桥作为主设备,而外部扩展的PCI设备则作为从设备。下面以外扩的以太网卡RTL8139为例说明如何操作RTL8139中的寄存器。
在输出通道中,AHB-PCI桥作为COREBUS的从设备,同时作为PCI总线的主设备。它从COREBUS上接收命令,然后在PCI总线上发起相应的传输。图2描述了就是桥作为PCI 主设备时的内部结构。
《ARM922T核ZCP320A处理器PCI总线操作(第2页)》