MSP430F149在电力测控保护产品中的应用
式中N为每周期等间隔采样点
数,u(k)、i(k)分别为第k次采样的电压、电流瞬时值。
4 快速开平方算法
计算有效值离不开开平方运算,开平方运算是非常耗时的算法。常见的定点数开平方运算有牛顿选代法、快速查表法、直流逼近法和试根法等。对于查表法,当被开方数变化范围较大时,提高运算精度和减少内存占用量是相矛盾的;直线逼近法需要存贮各段线性逼近函数的斜率和截距值,当要求的运算精度增加时,线性段的划分越密,运算处理时间随着增加;试根法的缺点是运算时间与被开放数的大小有关,并被开方数据很大时,试根次数增加,运算执行时间将变长;牛顿迭代法是一种一致收敛的开平方算法,若初始值选取得当,只需很少次甚至是一次迭代算法,即可得到满足给定精度要求的运算结果,但如果初值选择不当,将须多次迭代,在微机测量保护中电流、电压的动态变化范围很大,从而增加了选择初值的难度。
开平方函数f(x)=x2-c=0的根的牛顿迭代公式为:
可证明上述迭代算法是收敛的,收敛的速度完全取决于X0的选择,x0越接近真值根号c,收敛速度越快。
为选择适当的初值x0,可使用查表法。根据开方函数f(x)=x2-c=0的特点(当待开方数较小时,曲率大,插值误差也就较大,故要保证误差一致,则应取不待步长,低端步长小,高端时步长大),用不等步长存储表格可减少表格的存储量,提高查表时间。实际应用中,将不等步长查表法与牛顿迭代法相结合,形成一种混合开平方算法,查表用于给出牛顿迭代初值,经3次的迭代运算即可达到精度要求。
5 工频频率测量
工频频率是电力系统中基本的参数之一,利用F149内部的硬件资源可方便的实现频率测量。取一路电压信号,如A相电压信号+1.25V的直流电平信号进行比较,比较器输出的方波信号送至工作于捕获模式的定时器。定时器的时钟源泉为8MHz主频经8分频的1MHz信号。定时器在方波的上升沿开始计数,在下一上升沿到来时将计数值锁存,该计数值对应于工频的周期,经转换后即可得到工频频率。
在实际开发过程中遇到的问题是,虽然在F149内部可实现比较器与定时器的连接,但因该比较器无迟滞比较的功能,当比较器两输入端的电平接近时,比较器的输出端会产生振荡,因此必须将比较器的输出信号加以整形,方能输入到定时器上。F149内部比较器模块的内部滤波单元滤波效果不理想,故将比较器的输出引出,经RC滤波后再送到定时器上,其结构如图3所示。
以下给出定时器捕获中断的处理程序,由于工频频率的变化范围小,采样这种方式不需处理计数溢出中断,结构较为简单。
interrupt[TIMERA1_VECTOR]void Timer_A1(void){switch(TAIV){
case 2:
{First_Cnt=CCR1;
if(First_Cnt>Last_Cnt)
Period=First_Cnt-Last_Cnt;
//计数无溢出
else
Period=65535-Last_Cnt+First_Cnt;
//计数溢出
《MSP430F149在电力测控保护产品中的应用(第2页)》