基于谐波补偿的逆变器波形控制技术研究
在图2中,电压源U代表来自逆变桥的输出电压,电感L和电容C构成输出LC滤波器,电流源I代表负载汲取的电流,与滤波电感L串联的电阻r是滤波电感的等效串联电阻。由图2可知,在把逆变桥看作一个比例环节的情况下,逆变器的数学模型就是由输出LC滤波器构成的二阶系统。在本系统中,L=0.552mH,r=0.3Ω,C=135μF,所以逆变器数学模型为
G1(s)=3663 2/(s2+2×0.074×3663s+3663 2) (7)
它的离散化表达式为
G1(z)=(0.1007z+0.09845)/(z2 -1.735z+0.9343) (8)
根据图3,可以很方便地得到幅值补偿系数modcoeff(n)和相位补偿系数phacoeff(n)。表1给出了最终的取值。
表1 补偿系数的取值
波次
幅值补偿系数(放大倍数)
相位补偿系数(角度)
基波
0.993
0.7
3次谐波
0.934
2.3
5次谐波
0.818
4.5
7次谐波
0.643
7.9
9次谐波
0.417
15.7
3 实验结果
对本文所用的控制方案进行了实验,逆变器参数为L=0.552mH,r=0.3Ω,C=135μF,开关频率f=8kHz,输出频率50Hz,幅值110V的交流电压。采用一片TI的TMS320F240定点DSP实现所有的控制功能。阻性负载参数为R=11Ω。整流型负载参数为L=0.8mH,C=2460μF,R=27Ω。
实验波形如图4,图5和图6所示。
图4给出了逆变器接阻性负载的稳态输出电压和电流波形。图5及图6分别给出了逆变器在接整流型负载情况下开环稳态、闭环稳态的实验波形。可以看出开环情况下输出电压波形畸变严重,闭环以后输出电压波形有了极大的改善。
4 结语
本文采用了一种与重复控制不同的波形控制方案。实验结果表明,本文采用的改进型FFT算法大大减少了计算量,保证了在F240定点DSP上实现实时频谱分析,并且整个控制系统拥有较好的稳态性能。这说明本文采用的控制方案在理论上是正确的,实践
《基于谐波补偿的逆变器波形控制技术研究(第3页)》