多传感器信息融合技术在智能驾驶系统中的应用
CLARK算法首先对雷达信号进行卡尔曼滤波,用于剔除传感器输出的强干扰,这出下列状态和观测方程处理:
D(t)=R(t)+v(t)
式中,R(t)为前方障碍的真实距离(未知),R(t)是其速度(未知,)D(t)为距离观测值,Δt为两次观测的问题时间,w(t)和v(t)为高斯噪声。给定D(t),由Kalman滤波器估计R(t)和R(t)的值,并把估计值R(t)作为距离输入值,使用R(t)和D(t)的差值确定所用矩形模板的偏差。由于使用雷达探测的位置与雷达作为补偿。
使用上述算法可以有效提高雷达探测的可靠性,但当图像包含很强的边缘信息或障碍只占据相平面一个很小的区域时,仍不能得到满意的结果。因此,除对比度外,又引入视觉图像的颜色域。
3.3 相合似然法
在探测到障碍后,CLARK算法将这些信息整合到道路探测算法(LOIS)中。LOIS利用变形道路的边缘应为图像中对比度的最大值部分且其方位应垂直于道路边缘来搜索道路。如果只是简单地将两个信息整合,则障碍探测部分的像素被隐藏,其图像梯度值不会影响LOIS的似然性。这样可以防止LOIS将汽车前方障碍的边缘误认为是道路的边缘来处理。但是当道路的真实边缘非常接近障碍的边缘时,隐藏技术则失效。
为了使隐藏技术有效,可以在障碍和道路探测之间采取折中的处理方法。这种折中的处理方法就是相合似然法。它将探测障碍固定的位置和尺寸参数变为可以在小范围内变化的参数。新的似然函数由LOIS的似然和小探测障碍的似然融合而成。它使用七维参数探测方法(三维用于障碍,四维用于道路),能同时给出障碍和道路预测的最好结果。其公式如下:
式中,Tb、Tl、Tw为相平面内矩形模板的底部位置、左边界和宽度的三个变形参数,[xr(t),xc(t)]为变形模板相平面的中心。[yr(t),yc(t)]为由雷达探测并经Kalman滤波的障碍在相平观的位置。将地平面压缩变化为相平面,的实时估计,为相平面内一个路宽的值(3.2m)。tan-1的压缩比率在相平面内不小于Tmin(路宽的一半),不太于Tmax(路宽)。通过求解七维后验pdfP(k',b'LEFT,b'RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],Observed Image)的最大值获得障碍和道路目标。
3.4 CLARK算法的局限性
CLARK算法假定障碍为矩形形状且其最小尺寸为标准路宽的一半,所以当障碍为客车、货车、拖拉机及公共汽车时满足要求;但当障碍为摩托车、自行车及行人时就不适用了。这种矩形形状的假设也要求雷达为窄波束雷达,对其它宽波束雷达、扫描雷达或多波束雷达则无效,并假定探测障碍的偏向位置总是在转达波束的中心。
多传感器信息融合技术在智能驾驶系统(ITS)中的使用极大地提高了系统的稳定性和安全性,各种融合算法也都从不同方面更好地改善了系统的性能,但目前仍存在如何降低成本的问题,这对于ITS系统的普遍使用是很重要的。另外降低运算量、增强对多目标识别的可靠性也都有待进一步研究解决。
《多传感器信息融合技术在智能驾驶系统中的应用(第3页)》