用于偶极子声波测井仪的高精度数据采集系统的设计
2.1 硬件部分
整个并下声波采集系统由四个完全独立、功能相同、可以互换的数据采集通道及控制各个通道工作的井下单片机87C51(MPU)构成,如图1所示。MPU通过外部GAL译码电路产生采集通道控制信号,将采集通道的数据读入单片机外部RAM,并加上一些辅助信息后,由遥测电路上传给地
面系统。
数据采集通道原理如图2所示。每一路数据采集通道主要由模拟开关、放大器、高精度ADC AD676、采集通道控制器ispLSI1016、FIFO数据缓存器IDT7205、光耦等构成。
二选一模拟开关DG419具有高精度、低导通电阻、快速导通截止等优点,在采集通道控制器控制下切换声波模拟信号。放大器采用高性能运放AD845,以放大和缓冲来自模拟开关的模拟声波信号。高精度模/数转换器AD676在采集通道控制器的控制下,对声波信号进行数据采集。由于采用高速大容量FIFO及其采集通道控制器,可以保证在不占用MPU系统资源情况下,完成对多道信号的精确等间隔序列采样,保证了声波数据的质量。
采集通道控制器ispLSI1016是数据采集系统中的关键部件,要作用是根据MPU预先设置的命令来控制由MPU启动的数据采集过程。它由控制命令寄存器组、八路2:1MUX、FIFO控制器、采集深度可控计数器、可控分频器、ADC采集时序控制器等部分组成。数据采集速率及采集数据量(即采集深度)、ADC时序控制及接口、FIFO的数据分解及写入控制等均由该控制等完成,其内部逻辑结构如图3所示。控制命令寄存器组用来寄存器来自MPU的命令,并根据MPU的命令设置可控分频器、采集深度可控计数器,选择要采集的模拟通道,启动采集深度可控计数器。可控分频器利用ADC的状态,并根据控制命令寄存器组的命令,对时钟进行分频,ADC中状态控制其是否对时钟进行分频,控制命令寄存器组中寄存的命令决定分频的频率。不同的采集速率有不同的分频频率,共有4种数据采集速率(10、20、40、80μs/点)。采集深度可控计数器根据控制命令寄存器组的启动命令,利用来自可控分频器的时钟进行计数,并在计数过程中产生允许FIFO控制器和ADC采集时序控制器工作的信号,当计到指定的采集深度(256、512、1024、2048字,16位/字)后,停止采集,直到下一次采集命令再重新开始采集深度计数。ADC采集时序控制器利用可控分频器时钟,在采集深度可控计数器允许其工作的过程中产生用来控制ADC工作的采集、刻度和时钟信号。八路2:1MUX用于选择16位的采集数据的高8位或低8位数据。FIFO控制器在每一次信号采集中产生两次八路2:1MUX的选择和FIFO写信号,把16位的采集数据分两次写入8位FIFO,以利于与8位MPU接口。由MPU发出的“开始采集”命令可通过对写命令线的控制使所有通道控制器同时得到,保证了多通道并行采集的时间同步。
2.2 软件部分
系统的四个采集通道在单片机MPU的控制下完成数据采集,而MPU本身通过遥测电路接收来自地面系统的指令。上电后,MPU都要先对采集通道进行刻度,即送刻度命令到每一个采集通道控制器,然后由采集通道控制器给AD676发出刻度信号和时钟信号,使AD676完成刻度,并利用刻度结果修正采集数据。刻度也可以由地面系统发命令给MPU来完成。刻度之后,当MPU接到地面系统的采集命令时,便根据命令选择采集通道采集信号,设置采集速率和采集数据量。完成设置后,MPU同时启动所有通道的采集,采集通道控制器连续产生ADC控制信号,同时把上次采集数据由16位变为8位存入FIFO,直至完成指定数据量。MPU从各个采集通道读走数据送入遥测电路,传送给地面系统处理,然后MPU等待新的地面命令到来,准备下一次数据采集。图4是MPU控制软件的流程框图。
采用的高性能16位ADC,用CPLD作采集通道实时控制,使用FIFO作数据缓存,在单片机87C51的控制下组成了四通道声波波形并行采集系统,可以达到以下技术指标:
(1)采集分辨率:16位;
(2)采集速率
《用于偶极子声波测井仪的高精度数据采集系统的设计(第2页)》