市场微观结构理论研究综述
交易规模之间不存在关联关系。既然波动与信息流密切相关,且他们又发现交易规模与波动之间没有关联,因而得出结论认为,除了包含在交易频数中的信息之外,交易规模没有向市场参与者传递任何信息。然而,Huang & Masulis(1999),Chan & Fong(1999)的研究却确认了交易规模在成交量与波动关系中的重要性。Huang & Masulis(1999)认为,Jones,Kaul & Lipson(1994)计算的是一天中的平均交易规模,毫无疑问这平滑了潜在的差异并降低了信息含量。与其争论一致,他们发现当以小时为单位合计时,交易规模与波动之间具有非常强的正向关系。Chan & Fong(1999)把在NYSE和Nasdaq上市的股票交易和报价数据分成了不同的交易规模种类,检验了不同交易规模的交易频数与价格波动之间的关系发现,股价波动与中等规模交易的频数相关性最强。总之,实证证据支持指令流变动能够解释波动和逆向选择价差变动的假说。
2.指令流和交易成本的季节性。Wood、Mcinish & Ord(1985)以及Harris(1986)发现收益波动在日内成U型分布。既然波动是风险的一种计量方式,以交易成本模型为基础的库存模型表明买卖报价差也应当成U型分布。Jain & Joh(1988)以及Mcinish & Wood(1990)研究发现成交量也存在U型分布。根据已有的研究结果,成交量与交易成本之间呈负向的关系,因而我们又能够预期价差在日内应呈倒置的U型。在第一份对价差的日内研究中,Mcinish & Wood(1992)发现日内价差大致呈U型(作者描述为倒J型)。怎样才能解释日内价差的这种形式,库存模型认为专业商对库存失衡做出反应放宽了他们的价差。如果在交易过程中失衡累积起来,那么价差在收盘时应更大。信息模型认为,既然价格对非知情的流动性交易者来说是重要的信息来源,当市场初次开盘交易时,知情交易者具有最大的信息优势。因而,逆向选择成本应在交易日开始时最大。很多学者对这种信息影响提供了实证证据。
Chung、Van Ness(1999)把限价指令库分拆成公众提供的限价指令和市产提供的股份。他们发现专业商在早上参与交易最为积极,正如信息反映在价格中一样,专业商直到大约中午才收敛价差,之后保持稳定。既然专业商设置的价差在邻近收盘时并没有增加,他们的研究发现就不支持库存模型对U型价差的解释。然而,Bessembinder(1994),Huang & Masulis(1999)发现,在外汇市场中邻近交易结束时,价差中的库存成本部分非常明显,并且比较大。
总之,指令流和交易成本的日内型式表明,交易能够揭示信息,这导致逆向选择成本在一天中逐渐减小。邻近交易结束时的价差增加说明,市商在其后非交易期间持有库存的成本或风险增加。
四、市场结构与市场质量
市场结构就是指监管交易过程的一系列交易规则,如最小变动价位的限制、交易连续性的限制与交易执行的位置等,它们能够影响价格形成和交易成本,而且直接关系到市场质量(如价差、流动性、波动性等)的高低。
1.最小变动价位。为向海外开放市场交易,美国Nasdaq市场和NYSE的大多数股票报价和交易的最小变动价位分别在1997年6月2日和1997年6月24日都从1/8美元降到了1/16美元,这是在美国205年交易历史上对最小为动价位做出的第一次修改。从2000年8月28日开始同一专业商下的7只股票开始实行小数化定价(decimal pricing),截止到2001年1月29日,所有股票都提前按照SEC的要求实行了小数化定位,最小变动价位全部变为1美分。
Goldstein & Kavajecz(1999)发现,在NYSE采用1/16最小变动价位之后全部限价指令库中的深度下降。Jones & Lipson(1999)以机构交易为样本进行了分析后发现,最小变动价位转向1/16作为对深度有反向影响的一个直接后果是提高了交易成本。NYSE向SEC的报告中(2001)指出,通过最小变动价位变为1美分前的样本与变动后的样本比较,交易成本出现明显下降,这表现在买卖报价差平均下降了一半,有效价差平均减小了43%;其次还发现,交易数量有了比较大的上升,但平均交易规模出现了下降。最后发现,市场最大的成本是透明度出现了下降,因为市场参与者不愿意以限价指令的方式在小数化环境中展示流动性。市场出现了对小数化交易的抱怨,证据表明,进一步的小数化不会提高投资者的福利,长期来看可能会增加投资者的交易成本。
可见,实证证据并不完全支持价格的小数化。正如常规一样,存在着相互消长的关系。尽管通过小数制能够获得较低的价格,特别是对小指令而言降低了交易成本,但执行大宗指令的成本增加,因为小数制对深度具有反向影响。
2.价格限制。从字面上看,每日价格限制就是提前设定价格变动的最大边界,通常包括向上和向下两个方向,价格限制只允许证券价格在单个交易日内在此范围变动。价格限制一般按照上个交易日收盘价的一定百分比来设计,但也有为数不少的市场采用绝对价位设计(如日本东京证券交易所)。价格限制的主要功能是降低股票市场波动,其合理性在于通过约束价格,防止野生的或过度的日内波动发生,从而使市场承受较小的波动。证券
从理论上来分析,价格限制作为向投资者提供冷却期的一种措施,允许投资者重新评价市场信息并形成新的投资策略。另外,价格限制允许失衡指令的公开,从而有利于吸引价值型交易者。从这两方面看,价格限制能够免受剧烈的价格振荡。但Kyle(1988)和Fama(1989)认为,当触及价格限制时,有关价格的均衡位置不确定,这反过来又会增强价格波动,因而严格的价格限制实际上可能会引起更高的波动水平。对此,Kim(1997)利用东京证券交易所达到价格限制的股票为研究样本,同时选择了在样本股票达到价格限制日近乎达到限制的两组股票为控制样本发现,价格限制不但不能降低市场波动,反而会延缓价格发现的过程、造成波动溢出并干预了交易本身,降低了市场流动性。
总之,有关价格限制与市场波动之间的关系虽然没有完全达成一致的结论,但绝大多数的实证研究表明,价格限制并不能降低市场波动,而且也无助于流动性的提高。
五、信息与披露
有关市场微观结构的很多信息研究都集中在信息与披露上。透明度(transparency)可以定义为市场参与者观察有关交易过程信息的能力。这里的信息是指与价格、报价、成交量、指令流来源、市场参与者身份等有关的信息。美国证券交易委员会坚持认为交易和报价信息的公开传播在保证二级市场的有效性和公正性方面发挥了最基本的作用。相应地,所有美国交易所都被要求立即报道所有价格和成交量,并不断更新最优买卖报价。然而世界上不同的市场有不同的要求,例如,伦敦证券交易所和巴黎证券交易所的大宗交易可以延迟90分钟再报道,我国深圳证券交易所则延迟一个交易日再报道。因而,透明度对市场流动性的影响同样成为市场微观结构理论与实证研究的焦点。
Admati & Pfleiderer(1991)给出了一个有关阳光交易(sunshine trading)的模型。在这个模型中,一些流动性交易者能够提前宣布自己交易的指令规
本文链接地址:http://www.oyaya.net/fanwen/view/159981.html
2.指令流和交易成本的季节性。Wood、Mcinish & Ord(1985)以及Harris(1986)发现收益波动在日内成U型分布。既然波动是风险的一种计量方式,以交易成本模型为基础的库存模型表明买卖报价差也应当成U型分布。Jain & Joh(1988)以及Mcinish & Wood(1990)研究发现成交量也存在U型分布。根据已有的研究结果,成交量与交易成本之间呈负向的关系,因而我们又能够预期价差在日内应呈倒置的U型。在第一份对价差的日内研究中,Mcinish & Wood(1992)发现日内价差大致呈U型(作者描述为倒J型)。怎样才能解释日内价差的这种形式,库存模型认为专业商对库存失衡做出反应放宽了他们的价差。如果在交易过程中失衡累积起来,那么价差在收盘时应更大。信息模型认为,既然价格对非知情的流动性交易者来说是重要的信息来源,当市场初次开盘交易时,知情交易者具有最大的信息优势。因而,逆向选择成本应在交易日开始时最大。很多学者对这种信息影响提供了实证证据。
Chung、Van Ness(1999)把限价指令库分拆成公众提供的限价指令和市产提供的股份。他们发现专业商在早上参与交易最为积极,正如信息反映在价格中一样,专业商直到大约中午才收敛价差,之后保持稳定。既然专业商设置的价差在邻近收盘时并没有增加,他们的研究发现就不支持库存模型对U型价差的解释。然而,Bessembinder(1994),Huang & Masulis(1999)发现,在外汇市场中邻近交易结束时,价差中的库存成本部分非常明显,并且比较大。
总之,指令流和交易成本的日内型式表明,交易能够揭示信息,这导致逆向选择成本在一天中逐渐减小。邻近交易结束时的价差增加说明,市商在其后非交易期间持有库存的成本或风险增加。
四、市场结构与市场质量
市场结构就是指监管交易过程的一系列交易规则,如最小变动价位的限制、交易连续性的限制与交易执行的位置等,它们能够影响价格形成和交易成本,而且直接关系到市场质量(如价差、流动性、波动性等)的高低。
1.最小变动价位。为向海外开放市场交易,美国Nasdaq市场和NYSE的大多数股票报价和交易的最小变动价位分别在1997年6月2日和1997年6月24日都从1/8美元降到了1/16美元,这是在美国205年交易历史上对最小为动价位做出的第一次修改。从2000年8月28日开始同一专业商下的7只股票开始实行小数化定价(decimal pricing),截止到2001年1月29日,所有股票都提前按照SEC的要求实行了小数化定位,最小变动价位全部变为1美分。
Goldstein & Kavajecz(1999)发现,在NYSE采用1/16最小变动价位之后全部限价指令库中的深度下降。Jones & Lipson(1999)以机构交易为样本进行了分析后发现,最小变动价位转向1/16作为对深度有反向影响的一个直接后果是提高了交易成本。NYSE向SEC的报告中(2001)指出,通过最小变动价位变为1美分前的样本与变动后的样本比较,交易成本出现明显下降,这表现在买卖报价差平均下降了一半,有效价差平均减小了43%;其次还发现,交易数量有了比较大的上升,但平均交易规模出现了下降。最后发现,市场最大的成本是透明度出现了下降,因为市场参与者不愿意以限价指令的方式在小数化环境中展示流动性。市场出现了对小数化交易的抱怨,证据表明,进一步的小数化不会提高投资者的福利,长期来看可能会增加投资者的交易成本。
可见,实证证据并不完全支持价格的小数化。正如常规一样,存在着相互消长的关系。尽管通过小数制能够获得较低的价格,特别是对小指令而言降低了交易成本,但执行大宗指令的成本增加,因为小数制对深度具有反向影响。
2.价格限制。从字面上看,每日价格限制就是提前设定价格变动的最大边界,通常包括向上和向下两个方向,价格限制只允许证券价格在单个交易日内在此范围变动。价格限制一般按照上个交易日收盘价的一定百分比来设计,但也有为数不少的市场采用绝对价位设计(如日本东京证券交易所)。价格限制的主要功能是降低股票市场波动,其合理性在于通过约束价格,防止野生的或过度的日内波动发生,从而使市场承受较小的波动。证券
监管部门正是希望籍此能够达到降低股票市场风险、保持股票市场稳定、保护投资者利益的目的。
从理论上来分析,价格限制作为向投资者提供冷却期的一种措施,允许投资者重新评价市场信息并形成新的投资策略。另外,价格限制允许失衡指令的公开,从而有利于吸引价值型交易者。从这两方面看,价格限制能够免受剧烈的价格振荡。但Kyle(1988)和Fama(1989)认为,当触及价格限制时,有关价格的均衡位置不确定,这反过来又会增强价格波动,因而严格的价格限制实际上可能会引起更高的波动水平。对此,Kim(1997)利用东京证券交易所达到价格限制的股票为研究样本,同时选择了在样本股票达到价格限制日近乎达到限制的两组股票为控制样本发现,价格限制不但不能降低市场波动,反而会延缓价格发现的过程、造成波动溢出并干预了交易本身,降低了市场流动性。
总之,有关价格限制与市场波动之间的关系虽然没有完全达成一致的结论,但绝大多数的实证研究表明,价格限制并不能降低市场波动,而且也无助于流动性的提高。
五、信息与披露
有关市场微观结构的很多信息研究都集中在信息与披露上。透明度(transparency)可以定义为市场参与者观察有关交易过程信息的能力。这里的信息是指与价格、报价、成交量、指令流来源、市场参与者身份等有关的信息。美国证券交易委员会坚持认为交易和报价信息的公开传播在保证二级市场的有效性和公正性方面发挥了最基本的作用。相应地,所有美国交易所都被要求立即报道所有价格和成交量,并不断更新最优买卖报价。然而世界上不同的市场有不同的要求,例如,伦敦证券交易所和巴黎证券交易所的大宗交易可以延迟90分钟再报道,我国深圳证券交易所则延迟一个交易日再报道。因而,透明度对市场流动性的影响同样成为市场微观结构理论与实证研究的焦点。
Admati & Pfleiderer(1991)给出了一个有关阳光交易(sunshine trading)的模型。在这个模型中,一些流动性交易者能够提前宣布自己交易的指令规