一种新的实用安全加密标准算法——Camellia算法
·S变换
Camellia算法采用的S盒(见式(3))是一个GF(28)上的可逆变换,它加强了算法的安全性并且适用于小硬件设计。众所周知,GF(28)上函数的最大差分概率的最小值被证明为2-6,最大线性概率的最小值推测为2-6。Camellia算法选择GF(28)上能够获得最好的差分和线性概率的可逆函数作S盒,而且S盒每个输出比特具有高阶布尔多项式,使得对Camellia进行高阶差分攻击是困难的。S盒在GF(28)上输入、输出相关函数上的复杂表达式,使得插入攻击对Camellia无效。
S:L→L
(l'1(8),l'1(8),l'1(8),l'1(8),l'1(8),l'1(8),l'1(8),l'1(8)→
*s1(l'1(8)),s2(l'2(8)),s3(l'3(8)),s4('4(8)),s2(l'5(8)),s3(l'6(8)),
s4(l'7(8),s1(l'8(l8(8)))
其中, s2:y(8)=s1(x(8))=h(g(f(0xC5+x(8))))+0x6E
s2:Y(8)=s2(x(8))=s1(x(8))<<<1 (3)?
s3:y(8)=s3(x(8))=s1(x(8))>>>1
s4:y(8)=s4(x(8))=s1(x(8))<<<1?
算法中构造了四个不同的S盒,提高了Camellia算法抵抗阶段差分攻击的安全性。为了在小硬件上设计实现,GF(28)上的元素可以表示成系数为GF(24)上的多项式。这样,在实现S盒时,只需运用子域GF(24)上很少的操作。s1变换中所采用的f、h、g函数分别如(4)、(5)、(6)式所示。
(b1,b2,b3,b4,b5,b6,b7,b8)=g(a1,a2,a3,a4,a5,a6,a7,a8)
其中,(b8+b7α+b6α2+b5α3)+(b4+b3α+b2α2+b1α3)β
=1/((a8+a7α+a6α2+a5α3)+(a4+a3α+a2α2+a1α3))(6)
规定(6)式中GF(2的8次方)上运算=1/0,β是GF(2的8次方)上方程x8+x6+x5+x3+1=0的根,a=β238=β6+β5+β3+β2是GF(2的4次方)上方程x4+x+1=0的根。当然根据性能要求,在具体实现加密算法时,S盒的实现电路也可以直接查表的方式进行。
·FL/FL-1变换
Camellia算法每六圈加入一次FL/FL-1变换,用来打乱整个算法的规律性。加入FL/FL-1变换的另一个好处是可以抵抗未知的密码攻击方法,而且加入FL/FL-1变换并不影响Feistel结构加、解密过程相同。
FL:L×L→L
(XL(32)||XR(32),klL(32)||klR(32)→?(7)
《一种新的实用安全加密标准算法——Camellia算法(第2页)》