微型轴流式血泵外磁驱动电路设计
中电阻和电容组成的延时积分电路可防止b、c点输出电压波形中出现毛刺。将b、c两点的电压波形同时加到两个具有倒相功能的电流功放中进行V/I变换,就可以在绕阻线圈中得到图2所示的双向励磁电流。
本文链接地址:http://www.oyaya.net/fanwen/view/160190.html
2.4 功率放大电路[4]
功率放大器电路原理图如图6所示。该放大器由LF347和OPA552及一些电阻组成。其中LF347与R1、R2、R3、R4、R5构成差动输入减
法运算放大器,放大倍数K1=R2/R1Uo= - 2(U1-U2)。OPA552与R6、R7、R8、RW1构成了功率放大电路,其放大倍数K2可调,K2=(R7+RW1)/R6。该功率放大电路的总放大倍数为K=K1K2,放大器输出电压为:
Uout=K(U1-U2)
其中:K为增益,Uout是加在电动机两端的电枢电压。实际上,当U。为正值时,电机正转,当U。为负值时,电机反转。LF347和OPA552分别由±12V和±24V电源供电。
3 实验
为检验交变磁场产生方法和驱动电路的可行性,笔者制作了驱动磁场发生装置,并对其进行了实验测试。其实验系统框图如图7所示。其中,转子由高强度磁能极稀土永磁材料制成,它有一对磁极,磁场方向为径向,直径25mm,高度45mm,支架采用非导磁材料做成,电源为直流30V可调。
当系统为电机提供的输出电压为12V,电流为500mA时,电机开始转动。此时用光电测速仪测得的电机转速可达1000转/分。通过调节可调电阻可对电机转速进行调节。经过2小时的运转,驱动电路未发生发热、烧损现象。
4 结论
本研究实验表明,采用励磁线圈驱动法来产生交变磁场是可能的。相比传统的电机驱动,这种方法有着独特的优越性。实验证明,经过长时间的运转后,外磁驱动系统温升仍然很小,从而避免了传统方法中因为温升过大而引起的电机损坏。
由于本方所设计的驱动电路能够产生双向励磁电流,从而避免了电机换向带来的麻烦,简化了电路,提高了电机的驱动效率效率;同时,通过调节可调电阻可以改变输出脉冲的频率,从而达到调节电机转速的目的,同时也使整个过程实现起来比较容易。
《微型轴流式血泵外磁驱动电路设计(第2页)》