改进的单级功率因数校正AC/DC变换器的拓扑综述

因此,单级PFC变换器的主要问题是,在使输入电流谐波满足IEC1000-3-2和快速调节输出电压的同时,降低电容电压和提高效率;另外单级PFC变换器工作在硬开关状态时,开关器件承受的电压、电流应力高,因此,开关损耗很大。所以,人们提出了用变压器绕组实现负反馈,用软开关技术以及并联PFC等方法来降低电容电压,开关损耗和提高效率。下面介绍几种改进的拓扑以解决这些问题。

3 几种改进的拓扑介绍
3.1 单级并联PFC变换器[1][6][7]
如前所述,无论是单级还是两级结构,串联式拓扑结构的效率都较低。为了提高变换器的效率,人们提出了并联PFC方法。其基本思路如下:假设PF=1,PFC输入功率与输出功率关系如图4所
示,平均输入功率Pin的68%(P1)经过一次功率变换到达负载,32%的剩余功率(P2)为输入与输出功率在半个电网周期内的差,经过两次功率变换到达负载[1]。图5为该方法的功率流图,P2经过两次功率变换到达输出,其余部分P1经过一次功率变换达到输出,从而提高了电路效率,并且高于两级和串联单级变换器。
典型的单级BoostPPFC变换器[1]如图6所示,电路在原带隔离变压器Boost拓扑结构中加入了D1,S5及Cb。电路工作时,当检测到输入功率(Pin)小于输出功率(P0)时,S5开通,Cb中的能量释放到输出,这部分能量为P2。当输入功率(Pin)大于输出功率(P0)时,S5关断,通过控制S1~S4使多出的能量存入Cb。因此,电路的控制要实现三个功能,即输入电流控制,输出电压控制和电容电压控制。这种PPFC变换器的主要优点是效率高。由于这三个被控量之间存在耦合关系,所以,控制电路复杂,控制器设计困难;另外,开关管数目多,成本较高,这些都是该变换器的主要缺点。因此,它适用于较大功率场合而不适用于小功率场合。于是文献[6]提出了一种单级反激PPFC变换器,如图7所示。
T1,S,D3,Cf,RL构成电路的主支路,T2及D2组成电路的辅助支路。储能电容CB通过D1充电到输入电压的峰值电压作为辅助支路的输入电压。由于两个并联反激支路同时工作,使用二极管D2和D3来防止这两个支路之间产生循环电流。该变换器由输入电压Vin和储能电容CB同时给负载提供能量。尽管输入电压Vin给负载提供大部分能量。但是,当输入电压很小时,负载的能量主要由储能电容CB提供。两个变压器可以在DCM或CCM下工作。对于小功率应用,为了提高效率,两个变压器都工作在DCM下。主支路与辅助支路之间的功率分配决定输入电流的谐波含量,而变压器T1及T2的电感值决定功率分配。所以,通过正确的设计变压器T1及T2的电感值可以使输入电流的谐波含量满足IEC1000-3-2的要求。该变换器仅用一个有源开关和一个控制环就可快速地调节输出电压。
它的主要优点是结构简单、效率高、储能电容电压被箝位,电压值的大小等于输入电压的峰值,对功率开关管没有产生附加的电压应力。另外,在S开通时,由T1直接传递大部分能量到负载,降低了开关管的电流应力,提高了变换器的效