人口学研究方法:规范与发展
是通过抽样调查获得,允许有一定的误差;即使是全面的调查(如人口普查、全局报表),在实施过程中,也会遇到这样、那样的干扰或影响,存在着调查误差,这是无法完全避免的。从某种意义上讲,数据存在一定的误差,这是人口和计划生育统计的特点之一。
5 原因与结果
〔实例10〕最典型的例子莫过于“人口出生率每降低1个千分点,人均GDP提高多少个百分点”的说法。这种说法的依据是利用相关分析法对全国各省的人口出生率和人均GDP的数量变化进行计算,得出二者之间的函数关系式和相关系数。把人口出生率作为自变量,看自变量的单位变化影响因变量(人均GDP)变化的数量大小。
在这个例子中相关分析法本身以及有关的数据都是正确的,然而,用这样一个函数式来解释人口增长与经济增长的相互关系是有问题的。其一,就统计方法来说,相关分析只反映变量之间的相关关系,而不说明因果关系;其二,人口增长与经济增长固然相互影响,但从本质上来说,是经济发展影响人们的思想,进而影响人们的生育行为,最终导致生育率下降,人口增长率降低,即经济增长是“因”,而人口增长是“果”。颠倒了因果关系,不仅逻辑上讲不通,数量上的“相关性”也失去了意义。
笔者在多年的工作中体会到,由于人口和计划生育所具有的特点,人口和计划生育统计分析方法的应用和统计数据的解释有别于其它部门和领域对于统计的一般要求。正确地应用统计分析有助于我们认识人口和计划生育的特点和规律,只有科学地认识和把握人口和计划生育的特点和规律,才能避免在统计分析中陷入误区。
社会科学实证研究中的统计分析方法应用
郑真真 (北京大学人口研究所 副教授)
统计学的应用随着微型计算机的普及越来越广泛,在社会科学实证研究中几乎是无处不在。有了一定规模的数据和一个统计分析软件,就可以很方便地进行各种估算和分析。然而由于统计分析方法本身并不像加减乘除那样简单,而一些统计分析软件已经发展到几乎是人人都可使用的程度,如果使用者在只知其然不知其所以然的情况下操作并得到结果,可能出现对统计分析方法误用或滥用的现象。本文仅对一些统计分析中比较常见的问题进行讨论,以引起各方面的重视。
1 描述性统计
描述性统计是社会科学实证研究中最常用的方法。准确、全面、正确的描述是所有实证分析的基础,如果对某个事件或某种现象的描述不清楚或存在偏差,那么其后的所有分析都将是值得怀疑的。一项研究能够将所研究的现象或对象描述清楚,就是一个极大的贡献;而描述的偏差可能会引起公众或学术界对某些社会现象的误解,甚至误导政府决策。但是因为描述性统计所用方法简单易得,往往没有得到足够的重视。
均值的局限 普遍用于描述样本集中趋势的测量之一是均值。它对于近似正态的对称分布样本来说是比较好的测量,对于不对称分布则不然,尤其会受到极端值的影响。两个分布完全不同的样本可能会有相同的均值,因此均值在某种程度上抹杀了样本内部的差异,而往往这种内部差异正是需要我们进行深入研究的、或应当引起人们注意的。为了弥补均值的这个缺陷,一般在报告均值的同时也报告方差,或用直方图/散点图的形式描述分布,以提请读者注意群体内部的差异。
不同群体的可比性 在描述性统计中,往往涉及到对不同时期或不同人群的总体描述,以反映社会变化或地区差异。在社会科学中、尤其是人口研究中,不少事件的发生都是与年龄密切相关的,如我国妇女大部分在35岁以前完成了生育,从而导致35岁以上育龄妇女中极高的避孕现用率。在这种情况下,两个样本之间存在避孕现用率的差异可能只是年龄结构的差异,而不是年龄别避孕现用率的差异。又如在报告流动人口犯罪问题时,给人的印象往往是流动人口犯罪率高于常住人口,但忽视了流动人口的年龄和性别构成与常住人口完全不同,且青年男性是犯罪率较高的人群。这种对两个不同群体的比较往往会导致错误的结论。
绝对数的使用 由于中国人口数量巨大,调查研究也比较容易得到大容量的样本,所以对任何小概率事件用绝对数报告都会出现惊人的巨大数字,单纯对绝对数的强调往往会产生戏剧性的效果。比较合理的方式一般是在报告某事件绝对数的同时,给出该事件的发生率或占研究人群的比例。
小样本的代表性 在一次抽样的小样本中求得的率或比例会非常不稳定,与另一次抽样的结果可能会有较大差距。因此当研究仅限于从小样本获得的资料时,应当在报告比例的同时也报告样本量。
2 双变量统计分析
在社会科学研究中,首先分析的往往是两个变量之间的关系,如用相关或列联表等方法。一般在确定两个变量之间确实有某种关系,如在经过统计检验后证实两变量有显著相关关系,进行更进一步的分析才有意义。因此,双变量统计分析在实证分析中占有重要地位。但是,由于在应用中对有些问题的忽视,双变量统计分析也很容易出现偏差或错误。
卡方检验的局限 在利用列联表对两个定序/定类变量进行相关分析时,需要进行统计检验来判断两个变量的相关是否有统计上的显著意义。不少研究结果都用卡方检验的显著性报告相关状况。但值得注意的是,卡方统计量的计算本身是有局限性的,样本越大,卡方值就会相应增大,因此大样本的卡方检验很容易得到显著结果。所以一般在报告卡方检验结果以说明两变量是否显著相关时,还应当同时报告相关强度,即相应的相关系数,如Gamma,Lambda等。
统计意义上的显著与差别的实际意义 在检验两个定距变量的均值差别是否具有统计上的显著性时,也存在相似的问题。由于样本量越大,样本均值分布的方差就越小,因此常用的t检验结果就越可能显著,任何细微的差别都可能有统计上的显著性。但有时具有统计意义显著性的差异,在实际生活中可能意义并不大,如同在两个草堆之间找出一根草的差距,对判断两个草堆的大小没有实际意义。因此,对任何检验结果都应当有符合实际的解释和说明。
虚假相关问题 双变量分析中的虚假相关问题,几乎在所有关于社会科学研究方法的教科书中都会涉及到,在统计分析方法的教学中也被视为经典问题。但是多少年来,人们仍然在不断地重复着这个“经典的错误”,即认为可见的或统计检验结果显著的相关就是真正的相关;更为大胆的做法是把这种相关关系推向因果关系。我们知道,对于有的变量来说,即使是经过检验判定两者具有统计上显著的相关关系,也不一定存在实际意义上的关系,因为
3 多变量分析
回归分析是多变量分析中应用最多的方法,尤其是逻辑斯蒂回归更是被广泛地应用。在众多应用中,比较明显的问题是使用方法是否得当和对结果的报告和解释是否规范、合理(见2002年第2期《人口研究》刘金塘文)。此外还有一些应当引起注意的问题。
分析框架的重要性 在社会科学研究中,各变量之间往往存在错综复杂的关系,如果在进行回归分析之前没有一个清晰合理的分析框架,那么回归的结果有可能会引起质疑。一般应在报告回归分析结果之前,介绍该分析的框架,如各变量的定义、各自变量与因变量的假设关系及其理由等,对建立的回归模型做出合理性论证。有一些变量可能是作为控制变量纳入回归模型的,如性别、年龄等,最好事先解释清楚。对假设因果关系的模型,应当至少能够说明:(1)该因果关系在理论上是正确的、在实践中是合理的;(2)从事件发生的时间上来说,应当是原因发生在先、结果发生在后。如有些回归分析中,未加说明即把所有与因变量显著相关的变量都囊括在自变量中 《人口学研究方法:规范与发展(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/161952.html
5 原因与结果
〔实例10〕最典型的例子莫过于“人口出生率每降低1个千分点,人均GDP提高多少个百分点”的说法。这种说法的依据是利用相关分析法对全国各省的人口出生率和人均GDP的数量变化进行计算,得出二者之间的函数关系式和相关系数。把人口出生率作为自变量,看自变量的单位变化影响因变量(人均GDP)变化的数量大小。
在这个例子中相关分析法本身以及有关的数据都是正确的,然而,用这样一个函数式来解释人口增长与经济增长的相互关系是有问题的。其一,就统计方法来说,相关分析只反映变量之间的相关关系,而不说明因果关系;其二,人口增长与经济增长固然相互影响,但从本质上来说,是经济发展影响人们的思想,进而影响人们的生育行为,最终导致生育率下降,人口增长率降低,即经济增长是“因”,而人口增长是“果”。颠倒了因果关系,不仅逻辑上讲不通,数量上的“相关性”也失去了意义。
笔者在多年的工作中体会到,由于人口和计划生育所具有的特点,人口和计划生育统计分析方法的应用和统计数据的解释有别于其它部门和领域对于统计的一般要求。正确地应用统计分析有助于我们认识人口和计划生育的特点和规律,只有科学地认识和把握人口和计划生育的特点和规律,才能避免在统计分析中陷入误区。
社会科学实证研究中的统计分析方法应用
郑真真 (北京大学人口研究所 副教授)
统计学的应用随着微型计算机的普及越来越广泛,在社会科学实证研究中几乎是无处不在。有了一定规模的数据和一个统计分析软件,就可以很方便地进行各种估算和分析。然而由于统计分析方法本身并不像加减乘除那样简单,而一些统计分析软件已经发展到几乎是人人都可使用的程度,如果使用者在只知其然不知其所以然的情况下操作并得到结果,可能出现对统计分析方法误用或滥用的现象。本文仅对一些统计分析中比较常见的问题进行讨论,以引起各方面的重视。
1 描述性统计
描述性统计是社会科学实证研究中最常用的方法。准确、全面、正确的描述是所有实证分析的基础,如果对某个事件或某种现象的描述不清楚或存在偏差,那么其后的所有分析都将是值得怀疑的。一项研究能够将所研究的现象或对象描述清楚,就是一个极大的贡献;而描述的偏差可能会引起公众或学术界对某些社会现象的误解,甚至误导政府决策。但是因为描述性统计所用方法简单易得,往往没有得到足够的重视。
均值的局限 普遍用于描述样本集中趋势的测量之一是均值。它对于近似正态的对称分布样本来说是比较好的测量,对于不对称分布则不然,尤其会受到极端值的影响。两个分布完全不同的样本可能会有相同的均值,因此均值在某种程度上抹杀了样本内部的差异,而往往这种内部差异正是需要我们进行深入研究的、或应当引起人们注意的。为了弥补均值的这个缺陷,一般在报告均值的同时也报告方差,或用直方图/散点图的形式描述分布,以提请读者注意群体内部的差异。
不同群体的可比性 在描述性统计中,往往涉及到对不同时期或不同人群的总体描述,以反映社会变化或地区差异。在社会科学中、尤其是人口研究中,不少事件的发生都是与年龄密切相关的,如我国妇女大部分在35岁以前完成了生育,从而导致35岁以上育龄妇女中极高的避孕现用率。在这种情况下,两个样本之间存在避孕现用率的差异可能只是年龄结构的差异,而不是年龄别避孕现用率的差异。又如在报告流动人口犯罪问题时,给人的印象往往是流动人口犯罪率高于常住人口,但忽视了流动人口的年龄和性别构成与常住人口完全不同,且青年男性是犯罪率较高的人群。这种对两个不同群体的比较往往会导致错误的结论。
绝对数的使用 由于中国人口数量巨大,调查研究也比较容易得到大容量的样本,所以对任何小概率事件用绝对数报告都会出现惊人的巨大数字,单纯对绝对数的强调往往会产生戏剧性的效果。比较合理的方式一般是在报告某事件绝对数的同时,给出该事件的发生率或占研究人群的比例。
小样本的代表性 在一次抽样的小样本中求得的率或比例会非常不稳定,与另一次抽样的结果可能会有较大差距。因此当研究仅限于从小样本获得的资料时,应当在报告比例的同时也报告样本量。
2 双变量统计分析
在社会科学研究中,首先分析的往往是两个变量之间的关系,如用相关或列联表等方法。一般在确定两个变量之间确实有某种关系,如在经过统计检验后证实两变量有显著相关关系,进行更进一步的分析才有意义。因此,双变量统计分析在实证分析中占有重要地位。但是,由于在应用中对有些问题的忽视,双变量统计分析也很容易出现偏差或错误。
卡方检验的局限 在利用列联表对两个定序/定类变量进行相关分析时,需要进行统计检验来判断两个变量的相关是否有统计上的显著意义。不少研究结果都用卡方检验的显著性报告相关状况。但值得注意的是,卡方统计量的计算本身是有局限性的,样本越大,卡方值就会相应增大,因此大样本的卡方检验很容易得到显著结果。所以一般在报告卡方检验结果以说明两变量是否显著相关时,还应当同时报告相关强度,即相应的相关系数,如Gamma,Lambda等。
统计意义上的显著与差别的实际意义 在检验两个定距变量的均值差别是否具有统计上的显著性时,也存在相似的问题。由于样本量越大,样本均值分布的方差就越小,因此常用的t检验结果就越可能显著,任何细微的差别都可能有统计上的显著性。但有时具有统计意义显著性的差异,在实际生活中可能意义并不大,如同在两个草堆之间找出一根草的差距,对判断两个草堆的大小没有实际意义。因此,对任何检验结果都应当有符合实际的解释和说明。
虚假相关问题 双变量分析中的虚假相关问题,几乎在所有关于社会科学研究方法的教科书中都会涉及到,在统计分析方法的教学中也被视为经典问题。但是多少年来,人们仍然在不断地重复着这个“经典的错误”,即认为可见的或统计检验结果显著的相关就是真正的相关;更为大胆的做法是把这种相关关系推向因果关系。我们知道,对于有的变量来说,即使是经过检验判定两者具有统计上显著的相关关系,也不一定存在实际意义上的关系,因为
可能有未考虑到的变量或不可测量的变量在同时对两个研究变量起作用,有时甚至可能完全是偶然的巧合。例如,火灾的大小是以火灾损失来衡量的,而参加灭火的消防员人数是与火灾大小有关的,火灾越大,出动的消防员就越多,但凡是具有常识的人都不会根据出动消防员人数和火灾损失两个变量之间的高度相关,断定出动消防员越多火灾损失就越大,因为火灾的规模是决定因素(但很难直接衡量)。在有关人口科学研究中也有报告虚假相关的现象,如人口增长率的降低导致了经济增长的提法就是一例。因此,在分析相关关系时,应当根据理论、知识、经验、甚至常识来判断这种分析是否有意义、是否存在其他变量的作用(称为外在变量),避免得出有悖于常理的分析结果。有些虚假相关是可以通过统计分析方法判别的,如在控制了另外一些变量后观察两个变量的偏相关,或在双变量分析的基础上,进一步用多变量分析深入研究。
3 多变量分析
回归分析是多变量分析中应用最多的方法,尤其是逻辑斯蒂回归更是被广泛地应用。在众多应用中,比较明显的问题是使用方法是否得当和对结果的报告和解释是否规范、合理(见2002年第2期《人口研究》刘金塘文)。此外还有一些应当引起注意的问题。
分析框架的重要性 在社会科学研究中,各变量之间往往存在错综复杂的关系,如果在进行回归分析之前没有一个清晰合理的分析框架,那么回归的结果有可能会引起质疑。一般应在报告回归分析结果之前,介绍该分析的框架,如各变量的定义、各自变量与因变量的假设关系及其理由等,对建立的回归模型做出合理性论证。有一些变量可能是作为控制变量纳入回归模型的,如性别、年龄等,最好事先解释清楚。对假设因果关系的模型,应当至少能够说明:(1)该因果关系在理论上是正确的、在实践中是合理的;(2)从事件发生的时间上来说,应当是原因发生在先、结果发生在后。如有些回归分析中,未加说明即把所有与因变量显著相关的变量都囊括在自变量中 《人口学研究方法:规范与发展(第2页)》