保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

基于梯度调整的矩不变自动阈值图像分割算法


这样,基于梯度调整的矩不变自动阈值分割法的阈值T为:

T=t-α·MG    (13)

其中,α(0≤α≤0.3)为调整系数,根据经验在0.1左右选择。

3 算法仿真

在仿真试验中,选取了两幅图像,以矩不变自动阈值法和基于梯度调整的矩不变阈值法作分割,这两幅图像分别具有双峰直方图和单峰直方图的特性。由图1可以看出这两种阈值法在分割目标灰度分布简单的图像上的效果不相上下,都能比较好地分割出目标图像。由图2可以看出,当直方图为单峰或为单调函数时,用矩不变阈值法进行分割后的目标图像,虽然与原目标图像很相近,但是背景的干扰比较严重,存在较大的误判率,不利于后续的跟踪处理;而用基于梯度调整的矩不变阈值法对图像分割后,无明显的误判,分割出来的目标图像轮廓鲜明,可以极为方便地确定目标质心,有利于后续跟踪处理。从结果上可以看出其分割效果明显优于矩不变阈值法;且基于梯度调整的矩不变阈值法的算法相对简单,无须迭代或搜索,运算速度快。

到目前为止,虽然人们已经提出了很多种图像分割方法,但没有任何一种图像分割方法能够适用于所有的图像[4]。如何选择分割方法,主要是根据实际的应用环境和具体的目标而定。笔者所从事的“车载电视跟踪系统”中,目标图像分割是自动目标识别和跟踪的重要环节,其性能对

跟踪系统具有显著影响。应用基于梯度调整的矩不变自动阈值分割法,由实验结果可以看出,能满足系统实时处理的要求,而且在处理相对复杂的目标图像时,能够取得比较好的效果。


《基于梯度调整的矩不变自动阈值图像分割算法(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/164287.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。