保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

高速公路视频超速临控系统的实现


采用Moravac[6]算子作为点特征提取算子。它基于一个理想的特征点,在其四周所有方向上灰度具有很大的方差。

特征点提取的步骤为:首先,在5х5的窗口计算

式中,i=n-2,...,n+2;j=m-2,...,m+2;m,n为窗口中心像元的行、列序列,gij为(i,j)处图像的灰度值。

然后,确定备选特征点,若像元的有利值M大于经验阈值,则该像元为备选特征点;否则,该像元不是特征点。

最后,用抑制局部非最大M值的方法,确定特征点。检验每个备选特征点的M值是否为一定大小(5х5,7х7,9х9)窗口内的最大值,如果在窗口内有几个备选特征点,则取M值最大的像元作为特征点,其余均去掉。

为保证匹配的正确率,采用协方差最大与差的绝对值之和最小作为双重判据,决定匹配点的取舒畅,以增强匹配结果的可靠性。

    找到匹配点后,利用两者视差和事前标定过的视场内图像最小分辨率所代的最小距离以及图像采集的间隔时间,就可计算出目标速度,根据此值预测目标新位置并判断是否超速。

2.3 车牌自动定位

车牌自动定位是车牌照自动识别的第一步,正确而又可靠地检测出车牌区域是保证车牌识别率的关键。目前存在许多车牌自动定位算法,如Hough变换以检测直线来提取车牌边界区域、使用灰度分割及区域生长进行区域分割、使用纹理特征分析技术等。但实际使用时,单用一种方法难以达到实用要求。本文采用的方法是:首先用Prewitt算子提取车辆的二值边缘图像,然后用数学形态学、颜色搜索相结合的方法,进行汽车牌照定位。图4为汽车牌照定位实验结果示意图。

Prewitt算子定义如图5所示。由于汽车图像具体特殊的横向纹理特性,而牌照字符最具有纵向纹理特性,因此利用Prewitt边缘检测算子[7]的方向性,通过增强图像的纵向边缘可将牌照图像与汽车背景图像分离。

对Prwitt算子检测获得的二值边缘图像进一步采用数学形态学方法中的膨胀技术生成连通区域图像。其中结构元素S的选择,对于侯选牌照区域的形成与牌照区域提取至关重要,因膨胀后得到的牌照区域极易出现与其他纹理粘连的现象,从而给进一步牌照区域提取带来困难,因此采用的结构元素S为具有水平方向膨胀能力的水平线段,膨胀后能得到多个侯选牌照区域,如图4(c)所示。

针对上述方法得到的可能为车牌的区域,通过大小、长宽比例、侯选车牌字符边缘密度等几何特征分析侯选牌照区,再充分利用车牌号码区的颜色特征,通过搜索号码区底板颜色块和号码颜色的方法,进一步从图像中删除虚假牌照区,得到可能为车牌的区域。

    2.4 字符自动识别[8]

针对分割完成后的牌照图像进行字符自动识别,需首先对车牌图像二值化、字符切分和规范化、字符特征提取,然后根据字符特征库,完成车牌字符自动识别。图6为字符自动识别的效果示意图。

图像二值化的方法很多,针对车牌图像,二值化的基本要求

《高速公路视频超速临控系统的实现(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/164295.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。