保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 经济论文 >> 证券论文 >> 正文

中国股市流动性风险测度研究


值(绝对值)为基数的n[2]倍。一旦流动性风险损失额度超过了要变现资产的10%时,则说明在目前实行涨跌停板限制的情况下无法在当日实现变现目标。
    流动性风险值的计算
  一、样本选取与计算过程
  从“分析家系统”提取2002年1月4日至2002年8月13日共143个交易日上证综合指数、深证成份指数以及沪深两市代码分别为000001~000056、600600~600649区间的95只股票的每日开盘价、收盘价、最高价、最低价、成交量、成交金额。
  关于流动性指标的具体计算过程如下:
  1.填补缺失数据。对于因故停牌的股票我们采用SAS系统缺省的方法进行缺失数据填补,即将上一个交易日的数据默认为当日的数据。
  2.分别计算各证券的1n[(P[,max]-P[,min])/P[,min]]-1n(V),并对该指标序列进行描述性统计。
  3.在上述指标正态性检验不成立的条件下,检验该时间序列的自相关性和异方差性。
  4.在自相关性与异方差性存在的情况下,借鉴J.P Morgan的RiskMetrics模型来处理时间序列的异方差性,此时对处理后的时间序列进行正态性检验。
  5.如果此时正态性成立,则可以计算其在某一置信水平下的VaR,如果正态性不成立则考虑其他分布的拟合与检验的问题。
  6.针对投资组合流动性风险的计算,由于各证券之间的波动存在相互影响效应,这样就需要引进一个协方差来处理组合流动性风险问题。
  二、数据分析与检验。
  首先以上证综合指数为例来计算指数流动性风险值,计算过程中涉及到检验的置信度均取95%。
  针对1n[(P[,max]-P[,min])/P[,min]]-1n(V)进行描述性统计。利用SAS中UNIVARIATE过程对上证指数的L[*]序列进行分析,结果如表1(成交金额单位:亿元)。
  通过T检验我们发现该时间序列的均值不为零;W检验表明在置信度为95%的情况下无法接受其为正态分布。
  对数据作进一步检验,利用SAS的AUTOREG过程对其进行自相关性与异方差性检验,检验结果(略)表明,L[*]序列存在较强的自相关性与异方差性,在后面的计算中需要对其进行相关修正。
  三、异方差性的处理。
  借鉴J.P Morgan计算VaR的RiskMetrics模型处理异方差性的方法,构建时间序列的标准差。因为指数L[*]序列的均值不为零,所以先对其进行“均值标准化”,即将每个时点的数据均减去时间序列的均值,然后计算“均值化”的时间序列的标准差,定义为:σ[2,t+1|t]=(1-λ)λ[2,t]+λσ[2,t|t-1],这里最优衰减因子仍旧取0.94。这样我们对上述时间序列进行标准化处理(减均值除以标准差),得到一个新的时间序列。
  由于标准差递推公式为σ[2,t]+1=(1-λ)λ[2,t]+λσ[2,t|t-1],通常初始值赋予为当期数值的平方,这样我们对以后各期标准差进行递推时,需要过几期后数据方能平稳。所以在处理新得到的时间序列(标准化后的时间序列)时需要对其进行异常值剔除(主要是剔除前10期标准差不稳定的数值),然后再进行正态性检验,检验结果(略)表明标准化后的时间序列均值为零,标准差非常接近于1,且正态性检验表明我们有95%的把握保证其分布为标准正态分布。
    表1 对上证指数L[*]序列统计结果
  附图
    表2 其他L-VaR值
上证综指     1.019%     深证综指     1.477%
青岛啤酒     0.274%     深发展A      0.025%
方正科技     0.069%     深万科A      0.062%
永生数据     1.318%     北大高科     0.624%
胶带股份     1.076%     世纪星源     0.085%

  
  四、L-VaR的计算
  上文已表明:(L[*]-L[-]*)/σ[,L,t]~N(0,1),由此可知t时刻L[*,t]的分布也为正态分布,其均值为L[-]*,标准差σ[,L,t]。所以L-VaR=e[μ+1/2σ2]-e[μ-1.65σ]=1.019%每亿元。即当抛售价值为1亿元市值的一揽子指数投资组合时,由于流动性风险造成的经济损失超过1.019%(或101.9万元)的概率仅为5%。由此类推抛售2亿元的流动性损失则为101.9×2×2=407.6万元;抛售1000万元的流动性损失则为25.475万元。
  五、其他指数或股票的情况L-VaR值
  由于样本股数量过多,故表2仅列示了上证综合指数及上海市场的4只股票、深证成份指数及上深圳市场的4只股票(指数单位为:%

亿元,股票单位为:%万元)。
  通过对比发现,上海市场的流动性要好于深圳市场的流动性。同样变现1亿元资产的组合,按照上证综合指数构建投资组合的流动性风险要比按照深证综合指数构建的投资组合的流动性风险低45.8万元,而且该差值随着变现资产数额的增加呈几何级数增长。
  同样就股票来看,所选取的股票中深发展A的流动性风险最小,其次为深万科A、方正科技、世纪星源;流动性最差的为永生数据、胶带股份,这基本上符合市场的实际情况。所有样本股的流动性指标结果及L-VaR方法有效性检验略。
  相关分析的实际结果表明,L-VaR与Exchange(换手率均值)基本上负相关,但相关性较弱;与价差标准差呈较显著的正相关;与成交金额也呈较显著的负相关。但是L-VaR与蒋涛定义的风险指标之间的关系与理论相背离;同样蒋涛定义流动性风险指标与换手率、成交金额的关系也与理论关系相悖,其与价差标准差的关系符合理论,但相关性也比较弱。这主要是因为前面分析的蒋涛所定义的流动性指标因模型选取时存在信息漏出效应,即无法找到足够充分的自变量而使得流动性指标(波动性方程中成交金额的系数)不能精确反映证券的流动性。事实上,L-VaR涵盖了成交金额以及价差两个方面的信息,因此其在衡量证券的流动性时相对其他方法更为有效。从表2的排序结果来看,即直观上L-VaR反映的流动性问题基本上符合实际情况。如排名前20位的股票均为大盘股,且几乎都是深圳、上海本地股,就行业分布来看这些股票又多半属于金融、地产、能源等,事实上这20只股票均属于2002年上半年的热点板块,自然流动性比较好,流动性风险就比较低。排名靠后的多半是小盘庄股,偏离市场热点,尤其是"6.24"行情中这些股票基本上得不到现在市场的认可。
    组合流动性风险值测度探讨
  一、组合流动性风险值计算
  针对投资组合的流动性风险测度,我们可以先计算组合中各证券的流动性风险值,然后根据其在组合中的配置权重来计算组合的整体流动性风险值。但是在这样的计算过程中,我们忽视了证券之间波动的相互影响作用。例如当大量的变现(买入)某一证券A时,导致A价格的大幅波动,这样与其联动性强的证券(假设为B)必然会受到影响。按照上述方法计算组合流动性风险值时,只考虑了变现A所导致的流动性风险损失,而没有计算A对B的影响所导致B证券的损失问题。为此,我们引入组合流动性风险测度方法。
  组合流动性风险值的具体算法如下:我们认为组合流动性风险指标L[*]仍为正态分布,则组合L-VaR=EXP(μ+1/2σ[2,t])-EXP(μ-1.65σ[,t]);其中μ为组合各股票L[*]均值的线性组合,σ[2,t]=ω'∑ω为组合L[*]的方差,ω为组合各股票的权重,∑为各股票L[*]序列的协方差矩阵。之所以将组合的L[*]也假设为正态分布,主要是借鉴了指数L[*]的统计分布特性。就指数而言其实际就是一系列股票的线性组合,其在某个时点t上为正态分布。而事实上我们通过检验个股在时点t也为正态分布,故可认为指数组合的L[*]就是个股L[*]的线性组合。由于个股的L[*]在t时刻为正态分布,其线性组合在t时刻则也为正态分布。所以我们假设组合的L[*]为正态分布,且为组合各股票L[*]的按一定权重的线性组合。
  二、组合流动性风险的优化模型
  由于组合中各证券之间的相互作用,所以当组合需要完成一定的减持任务时,就需要考虑减持成本的问题,即按照何种比例进行减持。先减持流动性风险小的股票未必是明智的,因为价格波动会通过一定的传导模式来影响其余股票的波动。这里就涉及一个组合的减持优化问题。其核心目标是使组合的流动性风险值L-VaR=EXP(μ+1/2σ[2,t])-EXP(μ-1.65σ[,t])最小。由于组合的L[*]仍为正态分布且为所含有股票L[*]的线性组合,这样计算组合风险价值所用到的两个指标μ、σ[,t]即可通过组合股票按照某一特定的减持比例=(P[,1]P[,2]∧pn)来唯一确定。因此我们所说的优化问题就是要在若干p中寻求一个特定p使得组合的流动性风险值最小。为此构建模型如下:
  目标函数:
Min f(p)=e[μ+1/2σ]-e[μ-1.65σ]。
约束条件:μ=p·u'
σ[2]=p·∑·p'
p·1'=1
pi≥0
V·pi≤Vi

  
  其中p为各股票的减持比例;u'为各股票L[*]的均值向量;1'为单位列向量;V[,i]为第i只股票的市值;V为

《中国股市流动性风险测度研究(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/164611.html

★温馨提示:你可以返回到 证券论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。