中国股市流动性风险测度研究
变现资产目标。
三、实证分析
我们以华夏成长公布的2002年二季度投资组合10只重仓股为例来分析其核心组合的流动性风险值。数据来源:分析家;数据区间:2002年1月4日至2002年8月13日。另外我们假设在6月30日至8月13日区间华夏成长核心组合的股票与相应权重没有发生变化。
1.核心组合中证券的基本情况与L-VaR见表3。
从表3可以看出,华夏成长重仓股的流动性均比较好,其中招商银行因上市时间不长且一直是"6.24"行情以来的市场热点,因此该股票的流动性最好;其次为上海汽车、清华同方。相对来说流动性较弱的有中体产业、中集集团。
表3核心组合证券及其L-VaR
代码 名称 市值(万元) 比例 L-VaR%每万元 排序
600036 招商银行 13860.00 24.93% 0.0104% 1
600519 贵州茅台 7406.00 13.32% 0.0888% 6
000839 中信国安 5081.33 9.14% 0.0501% 4
600832 东方明珠 4752.56 8.55% 0.1351% 8
600104 上海汽车 4712.95 8.48% 0.0360% 2
000089 深圳机场 4457.70 8.02% 0.1303% 7
600009 上海机场 4267.47 7.68% 0.0887% 5
600100 清华同方 3746.50 6.74% 0.0458% 3
000039 中集集团 3717.00 6.69% 0.1885% 9
600158 中体产业 3593.80 6.46% 0.2487% 10
合计 55595.30 100.00%
2.减持情况对比分析
假设华夏成长为某种目的需要在下一个交易日变现1000万元核心组合的市值,但招商银行减持的额度不得超过500万元,其他股票的减持额度不得超过该股票市值的10%,则通过上面的分析存在一种优化方案。将优化减持方案与等额减持方案进行对比分析,结果如下:
优化减持方案的流动性风险值为0.017%每万元,减持方案为招商银行500万元、上海汽车212.52万元、中
结论与建议
本文针对目前市场所普遍关注的流动性问题进行了深层次的统计分析,利用VaR的思想来测度中国证券市场的流动性风险。在分析检验过程中我们发现,指数以及成交比较活跃的各股的流动性指标(L[*])一般具有很强的自相关性和异方差性,在对其进行异方差处理后均能够通过正态性检验。这样我们即可得到L[*]的统计分布,根据L与L[*]的一一对应关系来推导证券的流动性风险值。就该指标的准确性来看,因其涵盖了价格、价差以及成交量等信息,因此其较换手率、价差标准差、回归方程中成交金额系数等更具有现实意义。另外,流动性风险值不仅可以准确地对各证券的流动性进行排序,而且其更具现实意义的作用在于其可以直接度量在特定市场环境下要变现特定数额的资产所需要承担的流动性风险,即由于流动性风险的存在所导致的价值损失。
另外,针对组合流动性风险值的问题,我们并没有就组合中各证券的流动性风险值与变现权重进行简单的线性组合,而是考虑到某一个证券的波动可能会对其他证券产生影响。这样,处理证券之间波动的“协同”效应即成为组合流动性风险值计算的关键。本文通过风险适度放大等近似方法推导了组合流动性风险值的计算过程。
事实上,随着市场的发展,尤其是投资者队伍结构的改善,以基金为主导的投资者队伍结构逐渐形成,这样关于市场流动性问题研究就变得越发重要了。本文主要是借鉴了VaR思想来测度证券的流动性风险,但其中也存在许多需要完善的地方。如在分布拟合时,我们考虑到了流动性指标L[*]的异方差问题,但是对于均值只是考虑了对样本区间内的L[*]进行简单平均,事实上L[*]的均值也在一定程度上存在时变性,即近期的均值也可以比较好地预测下一期的L[*]指标,因此选择长期内的简单均值来衡量L[*]均值也存在一定的误差。我们可以针对L[*]进行单位根过程检验,如果成立则可以考虑重新定义流动性风险值。另外,组合流动性风险值的计算,实际上就是证券之间波动“协同”效应如何精确地拟合,也有待于进一步探讨。尽管L-VaR是一个直观、量化的风险测度手段,但其仅是流动性风险管理的一个必要手段,而非充分手段。在对基金进行流动性风险管理时还需要结合其他指标、方法,只有这样才能形成一个完整的流动性风险管理体系。
【参考文献】
[1] J.P Morgan 2000/1996 RiskMetrics Technical Document.
[2] 王春峰:《金融市场风险管理》,2001年。
[3] 菲利普·乔瑞著,张海鱼等译:《VaR:风险价值》,2000年。
[4] 陆懋祖:《高等时间序列经济计量学》,1998年。
[5] 蒋涛:《中国沪深股票市场流动性研究》,深交所第四届会员研究成果一等奖,2001年。
[6] 杜海涛:《VaR模型及其在证券风险管理的应用》,《证券市场导报》2000年第8期。
本文链接地址:http://www.oyaya.net/fanwen/view/164611.html
三、实证分析
我们以华夏成长公布的2002年二季度投资组合10只重仓股为例来分析其核心组合的流动性风险值。数据来源:分析家;数据区间:2002年1月4日至2002年8月13日。另外我们假设在6月30日至8月13日区间华夏成长核心组合的股票与相应权重没有发生变化。
1.核心组合中证券的基本情况与L-VaR见表3。
从表3可以看出,华夏成长重仓股的流动性均比较好,其中招商银行因上市时间不长且一直是"6.24"行情以来的市场热点,因此该股票的流动性最好;其次为上海汽车、清华同方。相对来说流动性较弱的有中体产业、中集集团。
表3核心组合证券及其L-VaR
代码 名称 市值(万元) 比例 L-VaR%每万元 排序
600036 招商银行 13860.00 24.93% 0.0104% 1
600519 贵州茅台 7406.00 13.32% 0.0888% 6
000839 中信国安 5081.33 9.14% 0.0501% 4
600832 东方明珠 4752.56 8.55% 0.1351% 8
600104 上海汽车 4712.95 8.48% 0.0360% 2
000089 深圳机场 4457.70 8.02% 0.1303% 7
600009 上海机场 4267.47 7.68% 0.0887% 5
600100 清华同方 3746.50 6.74% 0.0458% 3
000039 中集集团 3717.00 6.69% 0.1885% 9
600158 中体产业 3593.80 6.46% 0.2487% 10
合计 55595.30 100.00%
2.减持情况对比分析
假设华夏成长为某种目的需要在下一个交易日变现1000万元核心组合的市值,但招商银行减持的额度不得超过500万元,其他股票的减持额度不得超过该股票市值的10%,则通过上面的分析存在一种优化方案。将优化减持方案与等额减持方案进行对比分析,结果如下:
优化减持方案的流动性风险值为0.017%每万元,减持方案为招商银行500万元、上海汽车212.52万元、中
信国安199.60万元、清华同方87.88万元;该方案的减持成本明显低于等额减持(每只股票减持100万元)流动性风险值0.0474%。
结论与建议
本文针对目前市场所普遍关注的流动性问题进行了深层次的统计分析,利用VaR的思想来测度中国证券市场的流动性风险。在分析检验过程中我们发现,指数以及成交比较活跃的各股的流动性指标(L[*])一般具有很强的自相关性和异方差性,在对其进行异方差处理后均能够通过正态性检验。这样我们即可得到L[*]的统计分布,根据L与L[*]的一一对应关系来推导证券的流动性风险值。就该指标的准确性来看,因其涵盖了价格、价差以及成交量等信息,因此其较换手率、价差标准差、回归方程中成交金额系数等更具有现实意义。另外,流动性风险值不仅可以准确地对各证券的流动性进行排序,而且其更具现实意义的作用在于其可以直接度量在特定市场环境下要变现特定数额的资产所需要承担的流动性风险,即由于流动性风险的存在所导致的价值损失。
另外,针对组合流动性风险值的问题,我们并没有就组合中各证券的流动性风险值与变现权重进行简单的线性组合,而是考虑到某一个证券的波动可能会对其他证券产生影响。这样,处理证券之间波动的“协同”效应即成为组合流动性风险值计算的关键。本文通过风险适度放大等近似方法推导了组合流动性风险值的计算过程。
事实上,随着市场的发展,尤其是投资者队伍结构的改善,以基金为主导的投资者队伍结构逐渐形成,这样关于市场流动性问题研究就变得越发重要了。本文主要是借鉴了VaR思想来测度证券的流动性风险,但其中也存在许多需要完善的地方。如在分布拟合时,我们考虑到了流动性指标L[*]的异方差问题,但是对于均值只是考虑了对样本区间内的L[*]进行简单平均,事实上L[*]的均值也在一定程度上存在时变性,即近期的均值也可以比较好地预测下一期的L[*]指标,因此选择长期内的简单均值来衡量L[*]均值也存在一定的误差。我们可以针对L[*]进行单位根过程检验,如果成立则可以考虑重新定义流动性风险值。另外,组合流动性风险值的计算,实际上就是证券之间波动“协同”效应如何精确地拟合,也有待于进一步探讨。尽管L-VaR是一个直观、量化的风险测度手段,但其仅是流动性风险管理的一个必要手段,而非充分手段。在对基金进行流动性风险管理时还需要结合其他指标、方法,只有这样才能形成一个完整的流动性风险管理体系。
【参考文献】
[1] J.P Morgan 2000/1996 RiskMetrics Technical Document.
[2] 王春峰:《金融市场风险管理》,2001年。
[3] 菲利普·乔瑞著,张海鱼等译:《VaR:风险价值》,2000年。
[4] 陆懋祖:《高等时间序列经济计量学》,1998年。
[5] 蒋涛:《中国沪深股票市场流动性研究》,深交所第四届会员研究成果一等奖,2001年。
[6] 杜海涛:《VaR模型及其在证券风险管理的应用》,《证券市场导报》2000年第8期。
《中国股市流动性风险测度研究(第3页)》