保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

EMT系统边界磁场检测线圈的动态补偿及图像重建


式中,j=1,2,......P,表示激励场投影方向序号;C R、C1分别为空场时在第j个激励方向下第i个检测线圈检测值的实部和虚部。

进行

实际测量时,将每个检测线圈在各个激励方向下的检测信号的实际M R(i,j)和虚部M1(i,j)都乘以补偿因子K(i),从而得到各个检测线圈经过补偿后检测值的实部和虚部。

ER(i,j)=MR(i,j)xK(i)    (2)

E1(i,j)=M1(i,j)xK(i)    (3)

式中,ER(i,j)和E1(i,j)为经过补偿后的检测结果。

3 EMT检测线圈补偿前后的实验数据分析

为分析EMT传感器检测线圈进行特性补偿前后的测量数据,对传感器在同一种检测条件下各个投影方向、不同检测线圈的测量值进行分析,来比较补偿前后数据的分布特点。对于本实验的传感器系统,激励投影方向为16个,检测线圈为8个,所以共有128组测量值,其中每个测量值都包含实部和虚部。实验过程中为使每一个测量点的数据可靠,对数据进行多次检测产求取平均值,16个激励方向下8个检测线圈在128个测量点的测量数据如图3所示。图中所示的数据为每个测量点检测信号的模值,测量时被测空间为空场条件。

图3中(a)为未经补偿的检测数据M的图示,(b)为经过补偿计算后的检测数据E的图示。图中底部平面为测量点的图示,上部为各个测量点检测信号模值的图示,其中,N轴为检测线圈序号轴,P轴为激励投影方向序号轴,M轴和E轴为检测信号的模值。由图3(b)可知,对于一个固定的激励投影方向,各个检测线圈的检测值符合正弦规律;对于某一检测线圈,当激励场沿圆周旋转时,其检测值的模值也呈正弦分布。图3(a)中各个检测线圈在16个激励方向下的分布幅度不同,这体现出各线圈检测特性的不一致,但在图3(b)中, 这一现象得以补偿。所以由补偿前后的数据图示可以看出,这种检测线圈特性补偿算法在不改变检测数据随投影方向的分布结构的前提下,使得在同一种激励场下各种线的检测特性趋于一致。

4 补偿方法在EMT系统中的实现

这种补偿方法在实验系统中的实现可通过软件控制自动完成。每次实验系统启动时,首先进行补偿因子的计算,获得补偿因子后在实际物场测量时将检测线圈的检测值按照补偿算法进行修正。由补偿因子的计算方法可知,为实现补偿因子的计算,需要在EMT系统启动时保持被测空间为空场,这样每次得到的补偿值就是符合当时检测环境条件的补偿值。如果在系统启动时不能满足空场条件,则需要屏蔽这一自动补偿功能,补偿时可使用预先测得并存储起来的补偿因子。

应用该补偿算法进行图像重建的实验结果如图4所示。图像重建的实验条件是:被测物体为直径15mm的铜棒,放置于传感器的中央,激励场激励频率为187.5kHz。图中的中间部分表示被测物质在传感器截面上分布的概率。

图4中左边的重建图像是检测线圈未经补偿获得的结果,右边的重建图像为每个检测线圈按照本文所述的方法进行补偿后获得的结果。为显示重建图像的全部信息,没有对概率阈值以下的点进行截断滤除。由两图像比较可知,补偿后的图像较准确地反映了被测铜棒的分布位置,同时也说明EMT图像重建对检测数据的变化非常敏感,检测线圈特性不一致产生的微小误差就可以造成重建图像的较大偏移。

《EMT系统边界磁场检测线圈的动态补偿及图像重建(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/165655.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。