猝发式红外近距离测试系统发射部分电路设计
设轴的角速度为ω(rad/s),一转中采样的数据个数N,每个数据占有M位,红外通讯传输的波特率为V(bit/s),发送N个数据需要时间为tall(s),发射器通过发射窗口的时间(即有效通讯时间)为T(s),则一转中发射数据所需总时间为:
tall=(MN)/V (5)
如设转速为3000r/min,2θ=30°,由(4)式得:
T=1.67ms
设N=200,即采样频率
f=200sps/r×(3000r/min)/60=10ksps
若M=16,V=2Mb/s,
得:
tall=(200×16)/2M=1.6ms
由于tall<T,该模型可物理实现。
3 发射部分电路设计
上面通过对发动机输出功率信号进行分析,确定了采样频率,进而估算出存储器的最小存储容量,并建立了数据传输模型。采用猝发方传输数据,需要存储轴旋转一转所采集的所有数据,然后在发射窗口将数据发送给接收器,实现数据的瞬发。其特点是不需要安装一个圆周的接收器,如果所测轴半径较大或被测环境较紧凑,则近场遥测是不易实现的。而猝发遥测只需一个或几个接收器就能达到目的。
发射部分的结构框图如图2,这部分发现扭矩信号的采集、数字信号的编码,并将采集数据放在FIFO存储器中。当红外发射管接收到取数码命令后,如果采集电路断电,入于低功耗状态,则通知电源管理器打开电源VCC,让采集电路开始工作;如果采集电路已经开始工作,则会的开取数时钟,让FIFO移出数据,送给红外发光管发送给接收器。
3.1 数据的存储
由于采用猝发方式进行数据的传输,需要设计一个存储器将一转中所采集的数据先存放起来,当发射器经过发射窗口时,将数据实时地传输给接收器。存储器是发射部分的关键元件之一,它的选取直接关系到A/D变换器的选取以及控制电路的设计。对存储器的要求是先采集的数据先发送,后采集的数据后发送,否则接收部分将无法正确恢复原始信号,达不到测试的目的。因此需选择一个先进先出FIFO的16位存储器。又由于发射器是单通道,只能将数据以串行方式发送,所以要求存储器的输出是串行的,这样能减少并转串的中间环节。如果具有串进串出的FIFO,那样发射部分的体积会更小且控制逻辑更简单,这是笔者希望的。但实际上只查到并进串出FIFO和具有可编程的串并进-串并出四种功能的FIFO,由于后一种芯片体积大、功耗也大,所以选择了并进串出的FIFO。
综上所述,选用了IDT72105,容量为256×16位,高速、低功耗,具有独立收、发时钟控制的同步/异步FIFO存储器。它不但提供了存储空间作为数据的缓冲,而且还在EPP并行总线和A/D转换器之间充当一弹性的存储器,因而无需考虑相互间的同步与协调。FIFO的优点在于读写时序要求简单,内部带有读写的环形指针,在对芯片操作时不需额外的地址信息。当它接收到由红外发射管发出的取数指令SOCP后,通过SO端将同步帧信号输入到红外发射管的TXD端,发射出去。
图5 监测码编码器和帧结构
3.2 数据采集电路
由于选择了并进串出的FIFO,最好选择并行输出的A/D变换器,要求单电源供给,故选择了AD公司的AD7472,分辨率为12位,低功耗,电源供电范围为2.7~5.25V。AD7472转换器可以工作于三种模式:(1)高速采样模式(High Sampling);(2)睡眠模式(Sleep Mode);(3)猝发模式(Burst mode)。由于系统的采样频率不高(4kHz),所以利用AD7472的猝发模式,它与第二种模式相同,只是输入时钟(CLK IN)不连续,
《猝发式红外近距离测试系统发射部分电路设计(第2页)》