保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

冗余度TT-VGT机器人的神经网络自适应控制


根据Lyapunov稳定性理论,保证满足式(24)为稳定的充要条件是V为负定,由此可求得:

将式(22)求导并与式(30)联立求解,同时考虑到控制器稳定时式(11)所示系统与式(16)所代表的参考模型完全匹配,可得

由此已得到控制器的自适应控制律。

3 TT-VGT机器人的神经网络自适应控制

本文采用直接MRAC(模型参考自适应控制)神经网络控制器对TT-VGT机器人进行控制。在图3中,NNC(神经网络控制器)力图维持机器人输出与参考模型输出之差e(t)=l(t)-lm(t) →。即通过误差反传,并采用上节的自适应算法,调节NNC,使得其输出控制机器人运动到误差e(t)为0。

神经网络模型如图4所示。

4 实例分析

以四得四面体为例,如图5所示建立基础坐标系,末端参考点H位于末端平台EFG的中点。设参考点H在基础坐标系中,从点(0.8640,-0.6265,0.5005)直线运动到点(1.8725,0.5078,0.7981),只实现空间的位置,不实现姿态。运动的整个时间T设定5秒,运动轨迹分为等时间间隔的100个区间。不失一般性要求,末端在轨迹的前40个区间匀加速度运动(a=0.2578),中间20个工间匀速度运动,最后40个区间匀减速度运动(a=-0.2578),开始和结束时的末端

速度为。设各定长构件长度为1m,机构中各杆质量为1kg,并将质量向四面体各顶点对称简化。

传动装置的参数如下:

Ma=4.0×10e -3kg·m/V;Ba=0.01N·m/(rad·s -1);

近似认为各关节电动机轴上的总转动惯量在运动过程中保持不变,其值分别为:

J1=0.734kg·m2;J2=0.715kg·m2;

J3=0.537kg·m2;J4=0.338kg·m2

末端位置误差曲线如图6所示。从误差曲线可看出,采用神经网络自适应控制的机器人位置控制精度较高,稳定性较好。

本文提出采用直接MRAC神经网络自适应器对机器人进行轨迹控制的方案;建立机器人状态模型,推导出自适应控制算法,并对冗余度TT-VGT机器人轨迹控制进行了仿真。结果表明,该方案控制误差较小,稳定性较好。


《冗余度TT-VGT机器人的神经网络自适应控制(第4页)》
本文链接地址:http://www.oyaya.net/fanwen/view/165851.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。