保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 工程学论文 >> 正文

基于组件的三维CAD系统开发的关键技术研究


系统采用了层次结构,主要分为核心组件、功能组件、接口组件三层,上层组件可任意调用下层组件提供的所有服务。以下对图二作一些介绍:
    ◆ 核心组件层:该层包含了系统最重要和最基本的组件,是三维特征造型、二维关联绘图、部件装配、动态仿真等模块的共享部分。ACIS核心组件也位于其中,为系统提供ACIS几何造型基本功能;LM_GI是提供底层显示支持,如:对OpenGL的调用、对屏幕刷新的操作、基本几何元素的绘制;LM_PUBFUN中提供通用数学运算以及公用链表、队列、堆栈的类定义;LM_RUB包容了各种几何元素的橡皮条——rubberband,该部分是支持VGX动态拖放造型(drag-and-drop)、动态约束添加以及

装配模块中的动态干涉检查等的基本组件;LM_KERN包括本系统特征造型功能和ACIS几何造型引擎连接相关的类LmSuperElement(详见4),以及为上层提供的管理类、约束类、特征类等提供超类。
    ◆ 功能组件层:该层建于核心层之上,系统面向应用的主要功能部件均在这一层实现。用户的不同需求会希望配置不同功能的软件系统,从该层选折所需组件集进行不同配置即可。图二所示为三维部分的核心组件LM_KERNPART、特征造型组件LM_FEATURE、VGX约束管理器组件LM_VGX、处理选折对象的组件LM_PICK、和负责总体协调管理的组件LM_MANAGE等。而其中特征造型和VGX组件中又分别进一步细化为:草图特征、高级特征、自定义特征和VGX约束操作、约束管理约束求解等组件。
    ◆ 接口组件层:是系统的最高层,也是与用户直接进行交互操作管理的组件层,所以主要有处理鼠标事件MouseTool的LM_MT和管理系统界面中涉及到的对话框、菜单、工具条等资源的组件。
    可见,这种组件设计结构不仅极大的方便了不同用户需求系统的配置,而且将系统的用户接口与功能的具体实现分开,便于针对不同语种、不同操作系统平台、不同使用习惯开发丰富多彩的界面,也从技术角度实现了与ACIS几何引擎的无缝集成。

    4. 关键技术实现

    采用软件组件技术建立组件依赖关系为三维CAD系统架设了总体结构,但具体实现还需解决许多关键性技术,以下主要以特征造型技术为例说明系统的设计思路。
    由于ACIS本质上一个几何实体造型的平台,通过B-rep表示提供实体几何、拓扑结构的完整描述,但它并不直接支持特征造型。因此,如图三所示系统在实体模型和特征模型之间通过引入构造点、边、面的机制建立一种映射关系。每个特征中不仅包含工艺制造信息还包含其具体构造点、边、面信息,这些构造元素再与实体模型中的点、边、面建立联系。


    其中LmFeature最终派生于ACIS的ENTITY,以便于进行内存管理、文件存储和模型操作管理。m_Construction属性记录该特征的所有构造点LmSuperPoint、边LmSuperEdge、面LmSuperFace(三者均派生于LmSuperElement),它们又分别记录ACIS的VERTEX,EDGE,FACE和部分几何参数以及特定的语义信息;同时在每个ACIS拓扑元素(FACE,EDGE,VERTEX)中通过属性ATTRIB机制又嵌入其对应的LmSuperElement。这种双向链表结构方式不仅便于实现特征造型和实体造型间的无缝链接和快速查找,而且也为系统重建时维护拓扑关系奠定了基础。因为仅记录ACIS拓扑元素(FACE,EDGE,VERTEX)是不可能保证拓扑关系一致的。m_OtherInfo属性主要用于存放特征语义、工艺信息等,另外还为用户提供了手工添加特征语义的接口, 为真正支持CIMS环境下信息集成奠定了基础。
    在特征创建\删除\修改或模型重建过程中,为维护设计者的设计意图关键在于维护模型修改前后拓扑结构的对应关系即:拓扑一致性,因此必须考虑拓扑编码的问题。系统通过为每个从ENTITY派生的实体引入索引标志的方法解决,该索引标志不仅记录全局唯一标志符,而且通过充分利用ACIS ENTITY中的ATTRIB 和ANNOTATION 类对模型操作的具体变化做了详细的记录:操作前有那些面、边、点,操作后又产生了那些新的面、边、点等等。操作后系统自动重新整理,保证了拓扑结构的对应关系。
    要支持特征造型,还必需维护特征之间的依赖关系,以便修改特征参数后重建所有依赖特征,这些关系一般形成树形结构,又称特征树。 特征树方便了对特征的管理,但这种关系往往也限制了设计人员的设计思路,并且还可能出现:父特征的删除导致所有子特征的删除,如果某特证的参数依赖于其后续特征的参数导致系统重建时的崩溃等现象。于是系统采用双重坐标方法: 即对每个特征既记录其相对父特征的坐标,也记录其在全局坐标系下的坐标。这样,当父特征不存在时,子特征可在全局坐标系下"生存";另外, 采用VGX技术,将约束关系从几何关系中独立出来,建立全局约束链,相对独立的约束求解器, 结合代数方法和数值求解方法对约束整体联立求解,既增加了系统的动态导航、动态约束添加和动态修改机制又保证了模型的修改可以超越设计历史树的限制,使得设计人员随

《基于组件的三维CAD系统开发的关键技术研究(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/166049.html

★温馨提示:你可以返回到 工程学论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。