Z元件的温度补偿技术
有关,也与使用环境温度有关。当电路结构以及参数一定时(C=0.1mF,RL=15kW)输出频率f仅与工作电压E和工作温度T有关。为研究温度补偿原理,确定合适的补偿方法,特列出三者的隐函数关系:f = F ( T , E )
如果把Z-元件构成的频率输出电路看成是一个线性系统或者可进行线性化处理时,可利用叠加原理对该隐函数求其偏微分:
当电源电压改变DE,并恰好克服由温度变化DT对输出频率的影响时,输出频率将保持不变,即Df = 0,则:
若设: 为温度灵敏度, 为电压灵敏度,
进而得:STDT= - SE DE
为进一步定量地确定电压E和温度T之间的补偿关系,可定义温度补偿系数C为: [°C/V]
补偿系数C的物理意义是,工作电压E每改变1V时,能补偿温度变化多少度所引起的输出频率f 的温漂。显然,SE越大,或ST越小,使补偿系数C越大,越便于进行温度补偿。其中,“负号”表示为实现温度补偿,电压E的改变方向应与温度变化的方向相反。补偿系数C确定后,可按补偿系数要求设计补偿电路,实现温度补偿。
《Z元件的温度补偿技术(第4页)》
本文链接地址:http://www.oyaya.net/fanwen/view/166411.html
如果把Z-元件构成的频率输出电路看成是一个线性系统或者可进行线性化处理时,可利用叠加原理对该隐函数求其偏微分:
当电源电压改变DE,并恰好克服由温度变化DT对输出频率的影响时,输出频率将保持不变,即Df = 0,则:
若设: 为温度灵敏度, 为电压灵敏度,
进而得:STDT= - SE DE
为进一步定量地确定电压E和温度T之间的补偿关系,可定义温度补偿系数C为: [°C/V]
补偿系数C的物理意义是,工作电压E每改变1V时,能补偿温度变化多少度所引起的输出频率f 的温漂。显然,SE越大,或ST越小,使补偿系数C越大,越便于进行温度补偿。其中,“负号”表示为实现温度补偿,电压E的改变方向应与温度变化的方向相反。补偿系数C确定后,可按补偿系数要求设计补偿电路,实现温度补偿。
《Z元件的温度补偿技术(第4页)》