保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子信息工程论文 >> 正文

Z元件的温度补偿技术


摘要:本文详细地介绍了光敏Z-元件、磁敏Z-元件以及力敏Z-元件的温度补偿原理与补偿方法,供用户利用光、磁、力敏Z-元件进行应用开发时参考。

关键词:Z-元件、敏感元件、温度补偿、光敏、磁敏、力敏

一、前言

半导体敏感元件对温度都有一定的灵敏度。抑制温度漂移是半导体敏感元件的常见问题,Z-元件也不例外。本文在前述文章的基础上,详细介绍Z-元件的温度补偿原理与温度补偿方法,供光、磁、力敏Z-元件应用开发参考。

不同品种的Z-元件均能以简单的电路,分别对温、光、磁、力等外部激励作用输出模拟、开关或脉冲频率信号[1][2][3],其中后两种为数字信号,可构成三端数字传感器。这种三端数字传感器不需放大和A/D转换就可与计算机直接通讯,直接用于多种物理参数的监控、报警、检测和计量,在数字信息时代具有广泛的应用前景,这是Z-元件的技术优势。但由于Z-元件是半导体敏感元件,对环境温度影响必然也有一定的灵敏度,这将在有效输出中因产生温度漂移而严重影响检测精度。因而,在高精度检测计量中,除在生产工艺上、电路参数设计上应尽可能降低光、磁、力敏Z-元件的温度灵敏度外,还必须研究Z-元件所特有的温度补偿技术。

Z-元件的工作原理本身很便于进行温度补偿,补偿方法也很多。同一品种的Z-元件,因应用电路组态不同,其补偿原理与补偿方法也不同,特就模拟、开关和脉冲频率三种不同的输出组态分别叙述如下。

二、模拟量输出的温度补偿 对Z-元件的模拟量输出,温度补偿的目的是克服温度变化的干扰,调整静态工作点,使输出电压稳定。

1.应用电路

Z-元件的模拟量输出有正向(M1区)应用和反向应用两种方式,应用电路如图1所示,其中图1(a)为正向应用,图1(b)为反向应用,图2为温度补偿原理解析图。

2.温度补偿原理和补偿方法

在图2中,温度补偿时应以标准温度20℃为温度补偿的工作基准,其中令:

TS:标准温度

T:工作温度

QS:标准温度时的静态工作点

Q:工作温度时的静态工作点

QS¢:温度补偿后的静态工作点

VOS:标准温度时的输出电压

VO:工作温度时的输出电压

在标准温度TS时,由电源电压E、负载电阻RL决定的负载线与TS时的M1区伏安特性(或反向特性)相交,确定静态工作点QS,输出电压为VOS。当环境温度从TS升高到T时,静态工作点QS沿负载线移动到Q,相应使输出电压由VOS增加到VO,且VO=VOS+DVO,产生输出漂移DVO,。若采用补偿措施在环境温度T时使工作点由Q移动到QS¢,使输出电压恢复为VO,则可抑制输出漂移,使DVO=0,达到全补偿。

(1)利用NTC热敏电阻

基于温度补偿原理,在图1(a)、(b)中,利用NTC热敏电阻Rt取代负载电阻RL,如图3(a)、(b)所示,温度补偿过程解析如图2所示。

在图3电路中,标准温度TS时负载电阻为Rt,当温度升高到工作温度T时,使其阻值为Rt¢,可使静态工作点由Q推移到QS¢,由于Rt.<Rt¢,故应选NTC热敏电阻。当温度漂移量DVO已知时,只要确定标准温度时的Rt值及合适的温度系数(即B)值,使得在工作温度时的阻值为Rt¢,即可达到全补偿。

(2)改变电源电压

6t4.gif (3656 字节)

基于温度补偿原理,补偿电路如图4(a)、(b)所示,图5为补偿过程解析图,其中负载电阻RL值不变,当温度由TS升到T时,产生输出漂移DVO,为使DVO=0,可使ES相应增大到ES¢,若电源电压的调整量为DE,且DE= ES¢-ES,要满足DE=-KDVO的补偿条件,可达到全补偿。其中,K为比例系数,“负号”表示电压的改变方向应与输出漂移方向相反,比例系数K与负载线斜率有关,可通过计算或实验求取,且:

6t2.gif (384 字节)

为了得到满足补偿条件的按温度调变的电源电压,实际补偿时可采用缓变型 PTC热敏电阻、NTC热敏电阻或温敏Z-元件来改变电源电压E,达到补偿的目的:
《Z元件的温度补偿技术》

本文链接地址:http://www.oyaya.net/fanwen/view/166411.html

  • 上一篇范文: Z-元件特性与应用的扩展
  • 下一篇范文: DDB网络方案设计

  • ★温馨提示:你可以返回到 电子信息工程论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。