视频信号数字化处理后所带来的信号损伤和畸变的种类及特点
降低量化误差的方法最直接的就是增加量化级数减小最小量化间隔,但由此带来码率的增加从而要求更大的处理带宽,一般现在的视频信号均采用8比特、10比特,在信号质量要求较高的情况下采用12比特量化。此外,我们在设计一套系统的时候,可以考虑在系统的不同环节采用不同的比特量化,使得在系统的各个环节的量化级相互错开,从而避免量化噪声累积效果所产生的台阶效应,这种均衡的效果可以改善整个系统的量化失真。一般量化比特高的环节应该放在系统的前端,这样可以使系统的前端对信号造成的不可恢复损伤减小到最低限度。
为了减小量化误差我们还要正确的选择量化方式。量化有两种量化方式,一种是取整时只舍不入,此时产生的量化误差总是负的,最大量化误差等于两个相邻量化级的间隔d;另一种是取整时有舍有入,此时量化误差有正有负,量化误差的绝对值最大为1/2d。因此为了减少量化误差,应该采用有舍有入量化方式。
1.轮廓效应
如果信号两个相邻量化电平相差较大,若在图象面积较大的范围内,视频信号缓变区(如渐变的蓝天)能够看出不连续的跳变,即会在图象缓变区出现从一个量化电平到另一个量化电平之间的轮廓线,实际上就是图象的等量化电平线。这种轮廓线是原图象所没有的,所以又称为伪轮廓,即轮廓效应。
一种简单而有效的消除轮廓效应的方法是利用随机的高斯噪声信号发生器产生颤动信号,叠加到被量化的信号当中,当颤动信号的均方根值大于1/3d时人们便觉察不到轮廓效应的存在。在数字电视中使用最多的颤动信号是重复频率为取样脉冲的一半,峰-峰幅度为1/2d的方波,具体步骤如图五所示。
图五 高频颤动的效果
由图五比较可以看出,叠加颤动信号的效果等效于将量化间隔由d减小到1/2d,或者说将量化级数提高了一倍(比特数由n提高到n+1),从而改善了轮廓效应。顺便指出,由于模/数转换中的取样、量化都属于非线形过程,难以避免会出现差拍干扰,采用叠加颤动信号的方法对于消除图象中的差拍干扰也同样有效。同时由于颤动信号的幅度小,频率高,并未对图象细节造成显而易见的损伤。
2.颗粒杂波
如果最小量化电平不够小,则图象较弱信号的缓变区可能会出现在邻近的两个量化电平之间产生由于四舍五入法则而造成的跳变,使得图象在这个区域内出现颗粒状的杂波,而人的视觉对图象弱信号缓变区的噪声则是非常敏感的。
为了克服均匀量化时这种大信号时信噪比有余,而小信号时信噪比不足的特点,我们可以采用小信号时量化级间宽度小而大信号时量化级间宽度大些的非均匀量化,又叫非线形量化。值得说明一点,数字摄象机信号处理大多数采用非均匀量化方式,这是由于摄象机中的光-电转换至电视机显象管中的电-光转换在内的整个电视信道必须保持线形,但是实际的电视系统在没有校正之前是非线形的,因此为了使最终显示出来的光像保持良好的线形关系,在摄象机单元必须对它进行校正,即γ校正。而γ校正类似于非线形量化特性,因此我们可以在量化过程中采用非均匀量化方式,在提高小信号信噪比的同时也满足了γ校正的要求。
另外,由于在实际的信号中,弱信号出现的概率是很大的,为了改善弱信号时的的量化信噪比,可以采用压缩扩张的编解码方法。在量化之前,先利用非线形器件将信号电平高的部分进行压缩,然后对压缩过的信号进行量化,解码后复原出的模拟信号再通过非线形器件对大幅度信号进行扩张恢复没压缩之前的比例关系,这种方法相对扩大了小信号的动态范围,等效于对小信号采用量化间隔小的细量化而大信号采用粗量化,从而改善了弱信号的量化信噪比。
三 压缩编码所带来的信号损伤
数字电视信号数码率太高,数据量非常大。如果直接存储和传输不但开销很大,而且有时设备也承受不了如此大的负荷。压缩编码以压缩信源数码率为目的,尽量减少信源各符号的相关性,使信源的传输效率提高。当然,它是以牺牲图像质量为前提。必定会对信号造成一定的损伤。
下面针对几种常用的图像压缩方式,来看一下他具体会对信号带来什么样的损伤呢?
(一) 差值脉冲编码(DPCM)
电视图像基本上是由面积较大的像块(如蓝天,大地,服装)组成。虽然每个像块的幅值各不相同,但像块内各样值的幅度是相近或相同的。换句话说,相邻象素之间有很强的相关性。我们就可以利用这些相关性对当前的像素进行预测。再利用预测值得到差值。这样在很大的程度上降低了信源的冗余度。这种压缩方法对视频信号会产生以下问题:
1 由于在当前差值中包括当前的量化误差,而输出的前一样值又包括前一样值的量化误差,这就造成了量化误差的积累。而误