工神经网络应用于继电保护的探讨
0 km),正向出口(+0 km),线路中部(150 km),线末(300 km)。接地电阻Rg取值0 Ω,50 Ω,100 Ω,150 Ω,200 Ω,相间电阻Rp取值0 Ω,25 Ω,50 Ω,则共有5×4×(5+3+5×3+3)=520个样本。每个样本的5个输出都有一组期望的输出值,以此作为训练样本。而实际运行、故障时,保护所测到的电流、电压极少直接与样本相同,此时就需要用到模糊理论,规定某个输出节点。如YA(A相)在某一取值范围时,则被选中。
文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。
ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。
3 结论
本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。
一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护
神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。
参考文献
1 陈炳华.采用模式识别(智能型)的保护装置的设想.中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993
2 Robert E.Uhrig.Application of Artificial Neural Networks in Industrial Technology.IEEE Trans,1994,10(3).(1):371~377
3 Lee T H,Wang Q C,Tan W K.A Framework for Robust Neural Network-Based Control of Nonlinear Servomechannisms.IEEE Trans,1993,3(2).(3):190~197
4 Chow Mo-Yuen.The Advantage of Machine Fault Detection Using Artificial Neural Networks and Fuzzy Logic Technology.IEEE Trans,1992,5(6).(2):1078~1085
5 吴捷.现代控制技术在电力系统控制中的应用.全国高校电力系统及其自动化专业年会,广州,1997
6 Matthew Zedenberg.Neural Networks Models in Artificial Intelligence.[s.l.]:[s.n.],[s.a.]
本文链接地址:http://www.oyaya.net/fanwen/view/166598.html
文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。
ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。
3 结论
本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。
一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护
都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。
神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。
参考文献
1 陈炳华.采用模式识别(智能型)的保护装置的设想.中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993
2 Robert E.Uhrig.Application of Artificial Neural Networks in Industrial Technology.IEEE Trans,1994,10(3).(1):371~377
3 Lee T H,Wang Q C,Tan W K.A Framework for Robust Neural Network-Based Control of Nonlinear Servomechannisms.IEEE Trans,1993,3(2).(3):190~197
4 Chow Mo-Yuen.The Advantage of Machine Fault Detection Using Artificial Neural Networks and Fuzzy Logic Technology.IEEE Trans,1992,5(6).(2):1078~1085
5 吴捷.现代控制技术在电力系统控制中的应用.全国高校电力系统及其自动化专业年会,广州,1997
6 Matthew Zedenberg.Neural Networks Models in Artificial Intelligence.[s.l.]:[s.n.],[s.a.]
《工神经网络应用于继电保护的探讨(第2页)》