SoC系统的低功耗设计
Glitch活动最小化、FSM(有限状态机)状态译码的优化等。
⑤由硬件实现的算法级的功耗优化有:流水线和并行处理、Retiming(时序重定)、Unfolding(程序或算法的展开)、Folding(程序或算法的折叠)等等基本方法以及其组合。
(5)后端综合与布线优化
既然SoC的功耗与寄生电容的充放电有很大的关系,作为后端综合与布线,同样也可采取一些措施来减少寄存器电容。可以优化电路,减少操作(电路的操作),选择节能的单元库,修改信号的相关关系,再次综合减少毛刺的产生概率。
实际上,这一部分与使用的工具有关。与软件部分有相同之处,后端综合与布线同软件的编译差不多。软件编译的结果是产生可执行的机器代码;而RTL的综合与布线是把RTL代码编译成真实的电路。但是,后端综合与布线优化比较编译优化有更好的效果。这是因为一段RTL代码所对应的电路是可以有多种形式的;同时现有些编译器会根据设计者提供的波形,智能地修改电路(前提是最终电路的效果还是一样的),编译器就会进行相关的优化。但是后端综合的优化与RTL级代码优化和时钟控制相比,同样的RTL级与时钟优化所产生的影响要远大于用编译工具所产生的影响。
(6)功耗的精确计算
后端综合与布线工具不但可以根据基本单元提供的功耗参数进行优化,还可以根据这些参数估算出整个SoC的功耗。正因为有这样一些工具,使我们可以精确地知道我们所设计的是否达到设计要求。万一设计功耗不符合总体要求,则可能要求从系统级到物理综合布线都要做出检查与分析,做出可能的改进,尽可能地减少功耗以达到设计要求。
(7)小结
从上面的各种降低以及估算功耗的方法可以看出,SoC系统的拉耗优化涉及到从物理实现到系统实现的方方面面,是芯片设计中一个十足的系统工程。可以说,功耗可以决定一切。
结语
本文首先分析了CMOS集成电路的功耗物理组成,得到了其主要功耗成分。其次,以该主要功耗成分数学表达式为指导,突出了SoC低功耗设计的各种级别层次的不同方法。不管是现在还是将来,该领域的重要性将会日益显著。在下面的一些发展方向还将会有较大的发展:
①实现SoC系统设计的变换以及映射技术的进一步探索。
②将各种低功耗设计手段按照各性质最佳综合起来,以便使用基于人工智能的技术(如遗传算法和启发式算法等等)来研究。
③发展以实现低功耗为目的CPU指令程序的改写技术,以将其扩展到复杂SoC系统的设计中。
④进一步研究应用于SoC低功耗设计的编码和信号表示技术。
⑤扩展功耗估算模型的数量以覆盖所有的SoC系统模式,等等。
随着便携式和移动计算要求的进一步增长,集成电路—SoC的低功耗设计将变成一个越来越重要且必须面临的问题。它对开发新型电子产品,其意义重大。
《SoC系统的低功耗设计(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/166687.html
⑤由硬件实现的算法级的功耗优化有:流水线和并行处理、Retiming(时序重定)、Unfolding(程序或算法的展开)、Folding(程序或算法的折叠)等等基本方法以及其组合。
(5)后端综合与布线优化
既然SoC的功耗与寄生电容的充放电有很大的关系,作为后端综合与布线,同样也可采取一些措施来减少寄存器电容。可以优化电路,减少操作(电路的操作),选择节能的单元库,修改信号的相关关系,再次综合减少毛刺的产生概率。
实际上,这一部分与使用的工具有关。与软件部分有相同之处,后端综合与布线同软件的编译差不多。软件编译的结果是产生可执行的机器代码;而RTL的综合与布线是把RTL代码编译成真实的电路。但是,后端综合与布线优化比较编译优化有更好的效果。这是因为一段RTL代码所对应的电路是可以有多种形式的;同时现有些编译器会根据设计者提供的波形,智能地修改电路(前提是最终电路的效果还是一样的),编译器就会进行相关的优化。但是后端综合的优化与RTL级代码优化和时钟控制相比,同样的RTL级与时钟优化所产生的影响要远大于用编译工具所产生的影响。
(6)功耗的精确计算
后端综合与布线工具不但可以根据基本单元提供的功耗参数进行优化,还可以根据这些参数估算出整个SoC的功耗。正因为有这样一些工具,使我们可以精确地知道我们所设计的是否达到设计要求。万一设计功耗不符合总体要求,则可能要求从系统级到物理综合布线都要做出检查与分析,做出可能的改进,尽可能地减少功耗以达到设计要求。
(7)小结
从上面的各种降低以及估算功耗的方法可以看出,SoC系统的拉耗优化涉及到从物理实现到系统实现的方方面面,是芯片设计中一个十足的系统工程。可以说,功耗可以决定一切。
结语
本文首先分析了CMOS集成电路的功耗物理组成,得到了其主要功耗成分。其次,以该主要功耗成分数学表达式为指导,突出了SoC低功耗设计的各种级别层次的不同方法。不管是现在还是将来,该领域的重要性将会日益显著。在下面的一些发展方向还将会有较大的发展:
①实现SoC系统设计的变换以及映射技术的进一步探索。
②将各种低功耗设计手段按照各性质最佳综合起来,以便使用基于人工智能的技术(如遗传算法和启发式算法等等)来研究。
③发展以实现低功耗为目的CPU指令程序的改写技术,以将其扩展到复杂SoC系统的设计中。
④进一步研究应用于SoC低功耗设计的编码和信号表示技术。
⑤扩展功耗估算模型的数量以覆盖所有的SoC系统模式,等等。
随着便携式和移动计算要求的进一步增长,集成电路—SoC的低功耗设计将变成一个越来越重要且必须面临的问题。它对开发新型电子产品,其意义重大。
《SoC系统的低功耗设计(第3页)》