重油制气污水处理系统(A/O)技术改造
,瑞系统实际,对系统进行深度必造。
4.3.1 应用生物强化技术
常规废水处理系统中高效降解菌和硝化菌存在的数量不多,为了用于改造系统,利用饥饿育种、选择性压力等方法选育能有效分解废水中难降解有机物的微生物共7属117株,其中包含了较少见报道的杂环化合物降解菌;还富集、筛选了脱氮的硝化细菌株。
由于难降解、有毒的工业废水处理系统中的微生物的数量和增殖速度都远远低于一般无毒、高浓度有机废水处理系统的微生物,经过投加和驯化高效降解菌和硝化细菌,系统中缺氧池填料和活性污泥中培养的微生物的数量达到了较高的数量级,微生物的数量在低温季节仅比夏季低一个数量级。系统的处理效果有了较大的提高。
4.3.2 进一步改进缺氧一好氧处理工艺
目前国内缺氧一好氧工艺中缺氧池大多数采用由下部进水的方式,这种水解一酸化处理工艺对高浓度有机废水具有较为独特的优点。但当处理含有还原型化会物较多的石油化工废水生物处理的反应则应以好氧型反应为主。在下部进水的缺氧池中,填料由于浸泡在水中,生物缺氧程度较高;系统改造使用上部的进水方式,缺氧池的填料
4.3.3 更换缺氧池填料
微生物具有较强的吸附性能,采用多孔的填料充填缺氧池,投加降解菌和硝化细菌,通过对附着生长型微生物的挂膜驯化,可在多孔填料表面形成含有较多数量微生物的生物膜,即使在冬季低温和高浓度COD、NH3—N下,缺氧池仍可保持1×1O6~l.7×1O7个细菌/克填料,有效的增强了缺氧池的抗冲击能力和减毒作用。在进水正常时,缺氧池的作用表面上看起来不明显,在进水不正常时,缺氧池的减毒作用就能极大地减轻毒害物质对好氧活性污泥的强烈影响。
5 改造达到的技术指标及存在问题
国内调研表明,由于资金、设计缺陷和管理等原因,有些油制气厂处理设施瘫痪,无法运行,污水甚至未经任何处理直接外排。在调研时,某煤气厂污水处理系统正常运行,但由于污水发生量较大,系统不堪重负,处理效果不佳,COD和NH3—N严重超标。只有上海某厂和北京某厂处理效果稍好(表8),但都不能完全达到国家一级排放标准,即COD≤l50mg/L,NH3-N<20mg/L。
通过对系统的改造调试和对微生物的驯化,油制气生产废水在480640mg/L、NH、-N在58-182mg/L时,可以达到广州市的地方排放标准,COD≤110mg/L,NH3—N≤l0mg/L(图3)。利用普通缺氧一好氧处理工艺(A/O)在不投加外源碳源的情况下达标的结果在国内尚未见报道。
广州油制气厂有着特殊的生产特点,在冬季气温较低时,供气量较大,这时微生物的活性较低,污水发生量大,NH3-N和COD含量又较高,污水处理相当困难,对这种情况仍需不断的探索。
6 结论
将生物强化技术应用于含有高浓度氨氮和难降解有机物的工业废水处理可以取得良好的效果。通过选育能有效降解废水中难降解有机物的降解菌和生物脱氮微生物;改进缺氧生物滤池的填料;将生物膜处理方法和活性污泥处理方法有机的结合起来,使处理系统的减毒作用和处理效果可以明显增加。
结果表明,这种微生物处理法不依赖特殊的处理构筑物,运行相对简单、经济。对高浓度氨氮不需要投加碳源,具有良好的应用前景。
参 考 文 献
[1]唐森本等,环境有机污染化学,冶金工业出版社,1995
本文链接地址:http://www.oyaya.net/fanwen/view/166749.html
4.3.1 应用生物强化技术
常规废水处理系统中高效降解菌和硝化菌存在的数量不多,为了用于改造系统,利用饥饿育种、选择性压力等方法选育能有效分解废水中难降解有机物的微生物共7属117株,其中包含了较少见报道的杂环化合物降解菌;还富集、筛选了脱氮的硝化细菌株。
由于难降解、有毒的工业废水处理系统中的微生物的数量和增殖速度都远远低于一般无毒、高浓度有机废水处理系统的微生物,经过投加和驯化高效降解菌和硝化细菌,系统中缺氧池填料和活性污泥中培养的微生物的数量达到了较高的数量级,微生物的数量在低温季节仅比夏季低一个数量级。系统的处理效果有了较大的提高。
4.3.2 进一步改进缺氧一好氧处理工艺
目前国内缺氧一好氧工艺中缺氧池大多数采用由下部进水的方式,这种水解一酸化处理工艺对高浓度有机废水具有较为独特的优点。但当处理含有还原型化会物较多的石油化工废水生物处理的反应则应以好氧型反应为主。在下部进水的缺氧池中,填料由于浸泡在水中,生物缺氧程度较高;系统改造使用上部的进水方式,缺氧池的填料
表面形成三维的生物膜,生物膜表面的微生物代谢类型在废水流经时主要是好氧型,能更有效处理废水。
4.3.3 更换缺氧池填料
微生物具有较强的吸附性能,采用多孔的填料充填缺氧池,投加降解菌和硝化细菌,通过对附着生长型微生物的挂膜驯化,可在多孔填料表面形成含有较多数量微生物的生物膜,即使在冬季低温和高浓度COD、NH3—N下,缺氧池仍可保持1×1O6~l.7×1O7个细菌/克填料,有效的增强了缺氧池的抗冲击能力和减毒作用。在进水正常时,缺氧池的作用表面上看起来不明显,在进水不正常时,缺氧池的减毒作用就能极大地减轻毒害物质对好氧活性污泥的强烈影响。
5 改造达到的技术指标及存在问题
国内调研表明,由于资金、设计缺陷和管理等原因,有些油制气厂处理设施瘫痪,无法运行,污水甚至未经任何处理直接外排。在调研时,某煤气厂污水处理系统正常运行,但由于污水发生量较大,系统不堪重负,处理效果不佳,COD和NH3—N严重超标。只有上海某厂和北京某厂处理效果稍好(表8),但都不能完全达到国家一级排放标准,即COD≤l50mg/L,NH3-N<20mg/L。
通过对系统的改造调试和对微生物的驯化,油制气生产废水在480640mg/L、NH、-N在58-182mg/L时,可以达到广州市的地方排放标准,COD≤110mg/L,NH3—N≤l0mg/L(图3)。利用普通缺氧一好氧处理工艺(A/O)在不投加外源碳源的情况下达标的结果在国内尚未见报道。
广州油制气厂有着特殊的生产特点,在冬季气温较低时,供气量较大,这时微生物的活性较低,污水发生量大,NH3-N和COD含量又较高,污水处理相当困难,对这种情况仍需不断的探索。
6 结论
将生物强化技术应用于含有高浓度氨氮和难降解有机物的工业废水处理可以取得良好的效果。通过选育能有效降解废水中难降解有机物的降解菌和生物脱氮微生物;改进缺氧生物滤池的填料;将生物膜处理方法和活性污泥处理方法有机的结合起来,使处理系统的减毒作用和处理效果可以明显增加。
结果表明,这种微生物处理法不依赖特殊的处理构筑物,运行相对简单、经济。对高浓度氨氮不需要投加碳源,具有良好的应用前景。
参 考 文 献
[1]唐森本等,环境有机污染化学,冶金工业出版社,1995
《重油制气污水处理系统(A/O)技术改造(第2页)》