移相桥滞后桥臂实现零电压开关的方法综述
本电路的优点是:
1)滞后桥臂能够成功地实现零电压开通关断;
2)开关的开通损耗比较低;
3)占空比丢损比较小。
本电路中,谐振电感的设计比较重要,如果谐振电感选择得过大,就容易引起不必要的开通损耗,如果过小,又不能够使滞后桥臂实现零电压关断。谐振开关的开通时间也要合理选择,才能在实现滞后桥臂的零电压关断的条件下又不引起过多损耗。
上面电路的主要缺点是在负载比较小的时候,实现超前桥臂的零电压关断比较困难;电路中增加了两个谐振开关,使电路成本增大;控制电路比较复杂;谐振电路的开关是硬开关关断,将会产生额外损耗;两个谐振电路都是与同一个桥臂两个开关管并联,使得电路阻尼震荡加剧。
图5
4 一种新的并联谐振网络的零电压开关移相全桥变换器
文献[3]中也提出了一种并联谐振网络的方法,是将谐振网络分别与两个桥臂的下管并联,如图4所示。这样需调整一下控制方法,其控制策略如图5所示。S2及S4的开通时间为DT/2,而S1及S3的开通时间为(1-D)T/2,占空比的调节不需要移相,只要调整S2及S4的驱动信号的宽度就可以实现。由于S1及S3的开通处于能量传送过程,其并联电容上的电荷能够在它们开通前由原边漏感电流和副边耦合过来的电流抽掉,它们能够实现零电压开通,但S2及S4处于换流阶段,存储在漏感上的电流不足以使S4或S2的并联电容的电压降到零,这样需要借助谐振电路。在S2(S4)导通前,打开谐振开关Sa1(Sa2),在谐振电感上建立谐振电流,当S1(S3)关断时,就可以参与桥臂并联电容的充放电。这样电路中的4个开关管可以全部实现零电压开通。在该电路中,谐振支路与主开关管并联,可以实现任意较宽负载的零电压开关。由于可以减少漏感,从而减少了占空比的丢失。有源辅助电路种类的增加,使得选择最合适的电路并使设计达到要求成为可能。
图6和图7
5 一种全新的PWM-ZVS-FB变换器
上述电路都有一个共同的缺点,即在轻载时实现零电压开关比较困难,并且增加了两个谐振开关,使得控制电路变得非常复杂。文献[4]中提出了一种全新的PWM?ZVS?FB变换器,如图6所示,变换器各点波形如图7所示。左桥臂是滞后桥臂,右桥臂是超前桥臂。左桥臂和左边两个电容(两个电容很大,可以看成是两个电压源),变压器T1构成一个半桥拓扑结构;左右桥臂和变压器T2构成一个全桥拓扑结构,左桥臂上下开关的导通时间为半个周期(死区时间忽略不计)。通过调节右桥臂与左桥臂开通和关断信号的相位,实现电压的调节。其滞后桥臂零电压开关主要通过变压器T1和变压器T2的励磁电流来实现。为减少占空比的丢失,将两个变压器的漏感取得比较小,变压器T1上的励磁电流波形如图8所示,因此,变压器T1的励磁电流的增大不会引起占空比的丢失,而变压器T2的励磁电流波形如图9所示,它的增大会引起开关导通损耗增加。为了降低占空比损失,避免引起过多的开通损耗,将变压器T1的励磁电流取得比较大,将变压器T2的励磁电流和两变压器的漏感取得比较小。由于输出电压等于变压器T1和变压器T2的副边电压值之和,当两个变压器副边电压和变为零时,开关S1上的电压已抽走了一部分,在原边被副边钳位后,S1上的电压不是Vin,而是低于Vin,使实现滞后桥臂开关管的零电压开通更加容易。由理想波形图图7分析可看出,由于两个变压器同时传送能量,该电路的输出电压的纹波也很小,这样输出滤波电感可以设计得很小,从而减少了设计成本和变换器的体积。
该拓扑结构在没有增加任何开关管的情况下,成功实现零电压开关,而且由于变压器T1的存在,使得零电压开关可以在轻载时能够实现。同时又使输出的性能得到改善。
(凹丫丫范文网fanwen.oyaya.net收集整理)
6 结语
传统移相桥通常用于大功率的开关电源中,其滞后桥臂开关管难以实现零电压开通制约着它的应用,为更好地改善滞后桥臂的开通条件,真正实现零电压开通,许多技术和拓扑被提出。本文通过对传统的移相PWM?ZVS?FB变换器的特点及其存在问题进行分析,并对最近出现的实现全桥零电压开关的解决方法进行详细的分析,比较了它们的优缺点。这几个方法和拓扑都大大改善了滞后桥臂的开通条件,特别是最后的那种方法不但实现了零电压开关,还改善了输出滤波条件,值得我们进行更深入的研究。
《移相桥滞后桥臂实现零电压开关的方法综述(第2页)》