保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

高压大功率变换器拓扑结构的演化及分析和比较


3)与二极管钳位型多电平变流器一样,电容钳位型多电平变流器也存在导通负荷不一致的问题。

4 以变流单元电路串联为基础的多单元变流器结构

4.1 级联型多电平拓扑结构

这是一种较为新颖的多电平变换器拓扑结构。级联型多电平变流器,采用若干个低压PWM变流单元直接级联的方式实现高压输出。由这种拓扑结构组成的电压源型变频器系由美国罗宾康公司发明并申请专利,取名为完美无谐波变频器。我国北京利德华福生产的高压变频器也是采用这种结构。该变频器结构具有对电网谐波污染小,输入功率因数高,不必采用输入谐波滤波器和功率因数补偿装置,输出波形好,不存在由谐波引起的电动机附加发热,转矩脉动,噪声,共模电压等问题,可以使用普通的异步电动机。

4.1.1 单元串联多电平变换器原理[3]

单元串联多电平变换器采用若干个独立的低压功率单元串联的方式来实现高压输出,其原理如图4(a)所示。6kV输出电压等级的变频器主电路拓扑结构如图4(b)所示。电网电压经过二次侧多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交—直—交PWM电压源型逆变器结构〔见图4(c)〕,将相邻功率单元的输出端串接起来,形成丫联结结构,实现变压变频的高压直接输出,供给高压电动机。每个功率单元分别由输入变压器的一组二次绕组供电,功率单元之间及变压器二次绕组之间相互绝缘。对于额定输出电压为6kV的变频器,每相由5个额定电压为690V的功率单元串联而成,输出相电压最高可达3450V,线电压可达6kV左右,每个功率单元承受全部的输出电流,但只提供1/5的相电压和1/l5的输出功率,所以,单元的电压等级和串联数量决定变领器输出电压,单元的额定电流决定变频器的输出电流。

由于不是采用传统器件串联方式来实现高压输出,而是采用整个功率单元串联,所以,不存在器件串联引起的均压问题。由于串联功率单元较多,对单元本身的可靠性要求很高。输入变压器实行多重化设计,达到降低谐波电流的目的。

4.1.2 同其他拓扑结构的比较

与采用高压器件直接串联的变频器相比,采用这种主电路拓扑结构会使器件的数量增加。但低压IGBT门极驱动功率较低,其峰值驱动功率不到5W,平均驱动功率不到1W,驱动电路非常简单。由于开关频率低,且不必采用均压电路和浪涌吸收电路,所以系统在效率方面具有较大的优势。功率单元采用目前低压变频器中广泛使用的低压IGBT功率模块,技术成熟、可靠。由于采用二极管不可控整流电路结构,所以,变频器对浪涌电压的承受能力较强。

相对于二极管钳位型和电容钳位型多电平变流器,这种结构避免了使用大量的钳位二极管或电压平衡电容。每个独立直流源与一个单相全桥变流器相连。交流侧的端电压通过串联方式叠加,形成多电平变流器的输出电压。每个单相全桥变流器可以产生一个三电平的输出电压。由m个变流器单元级联而成的多电平变流器的电平数为(2m+1)。

单元级联多电平拓扑结构的优点是:1)使用串联的方法可以将耐压低、开关频率也不高的功率器件直接应用到高压大功率场合;

2)基于单元串联结构,每个单元的控制逻辑都是独立的,从而解决了中点钳位逆变电路在电平数增加时,开关逻辑越来越复杂的问题;

3)各单元互相隔离,串级电路结构不存在静、动态均压问题;

4)在串级电路设计上可以使用功率单元旁路技术,这样当某个单元发生故障时,控制系统可以直接将故障单元旁路,电路仍可继续工作,只是输出电压略有下降;

5)串级电路的单元模块化为实际安装和使用提供了很大便利;

6)串级电路使用多副边绕组变压器,通过副边绕组的移相联接可以将电流谐波影响几乎减小到零,从而改善了电路的功率因数。

然而,串级电路结构的缺点也比较明显:

1)每个基本单元都用一个独立的直流电源供电,虽然使各个单元彼此隔离,但随着电平数增加,直流电源数也将增加;

《高压大功率变换器拓扑结构的演化及分析和比较(第3页)》
本文链接地址:http://www.oyaya.net/fanwen/view/167645.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。