保存桌面快捷方式 - - 设为首页 - 手机版
凹丫丫旗下网站:四字成语大全 - 故事大全 - 范文大全
您现在的位置: 范文大全 >> 理工论文 >> 电子通信论文 >> 正文

视频图像中的车辆检测跟踪和分类


驶离监视范围的整个过程。首称要确定区配准则。常用的图像匹配方法有Hausdorff距离区域法和图像互相关。这两种方法都需要逐个含金量纱的计算。为了减小计算量,采用区域特片跟踪法。目标区域的特征包括区域形心坐标、区域包围矩形、区域运动速度及运动方向和区域面积。本文匹配准则采用了两个假定:同一目标所对应区域在相邻两帧中面积相近;同一目标在前一帧中的区域形心加上运动速度所得到的形心预测值与后一帧中区域形心距离相近。跟踪过程如下:

(1)将第一帧的各个区域当作不同的目标,对各个目标区域启动目标链。

(2)根据判决准则,如果某目标链中的区域在当前帧找到了匹配区域,则用找到的的匹配区域特片更新该目标链中的区域特征。

(3)如果在形心预测值所在位置,当前帧区域和目标链中区域面积相差很大,则可以认为发生了合并或者分裂现象。对目标链中的区域包围矩形,在本帧查找该矩形覆盖了几个区域,如果多于一个区域,则认为发生了分裂现象。对分裂现象出现的新区域,启动新目标链。同理,对于本帧区域的包围矩形,查找该矩形覆盖了几个目标链中的区域,如果多于一个,则认为发生了合并现象,利用合并区域启动新的目标链,同时终止那些被合并区域的目标链。

(4)对于目标链中的区域,如果在本帧没有与之相匹配的区域存在,则认为发生了消失现象。目标链并不立即终止,只有在经过数帧仍没有找到匹配之后,才终止该目标链。

(5)查找本帧是否还存在新进入的区域,如果存在,则启动新的目标链。

采用这种方法可以快速跟踪图像序列中的目标,同时得到车辆在监视范围的平均速度。在计数时,只有目标在连续数帧里出现才认烛一个真正的目标区域,只有目标在连续数帧都没有出现才认为消失,因此可以消除那些暂时消失引起的计数错误。

车辆分类是个很复杂的问题。图像处理方法要获得轮数、轴距等车辆本身参数比较困难,因此图像识别车型通常采用模型匹配方法。现有的研究大多是先抽取车辆的几条直线边缘,然后用线条和模型边缘匹配。由于在图像中抽取直线本身的计算量相当大,所以本文没有抽取车辆边缘直线,而是直接利用了Canny边缘检测的整体结果与模型相匹配。Canny边缘与模型边缘之间存在较大的形变,Hausdorff距离匹配对形变不敏感,所以采用Hausdorff距离作为匹配准则是很适宜的。

设有两组有限点集A={a1,…,ap}和B=={b1,…,bq},则二者之间的Hausdorff距离定义为:

H(A,B)=max(h(A,B),h(B,A))    (3)

其中: ||bj-ai||,h(A,B)被称为从A到B的有向Hausdorff距离,它反映了A到B的不匹配程度。h(B,A)的意义与h(A,B)相似。在具体计算Hausdorff距离时,通常采用距离变换的方法。车辆分类步骤如下:

(1)在分割结果的基础上,对目标区域进行Canny算子边缘检测,仅仅处理分割出目标区域的边缘,减小了运算量。

(2)对Canny边缘,采用串行距离变换,得到距离变换图像。距离变换图像的每个像素灰度值等于该像素到目标边缘的最近距离。

(3)对各分割目标,恢复车辆的三维信息,只计算长度和宽度。由于二维图像平面上一点对应了摄像机坐标中不同深度的一第洌 点,所以在从图像上一点恢复该点在世界傺 标中的信息时,首先要给定该点在世界坐标值中一个分量以减少不确定度(这样恢复出来的数值有些误差,通常给出Z方向高度值Zw)。

(4)在计算目标区域长度和宽度的同时,可以求出车辆底盘形心在地面上的位置(X,Y),根据速度方向判断车辆在地面上的角度α。利用车辆本身的三维模型数据以及(X,Y,α),通过式(1)透视投影,消隐处理,可以确定车辆模型在图像平面上的投影。

(5)当目标进入指定区域后,以模型投影图像为模板,将投影图像在距离变换图像上移动,在每一个位置,求出模型影图像下距离变换图像被模型轮廓线覆盖的像素值之和,以这个和值作为在该位置当前模型与实际车辆的匹配程度。将当前模型在各位置所得区配程度的最小值作为当前模型与车辆的实际匹配程度,该最小值除以模型轮廓线的像素数目,即

《视频图像中的车辆检测跟踪和分类(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/167842.html

★温馨提示:你可以返回到 电子通信论文 也可以利用本站页顶的站内搜索功能查找你想要的文章。