Z-半导体敏感元件原理与应用一
sp;
>-3
RL=Vth/Ith
反向灵敏度
SR
mV/100lx
>800
E=25V
反向灵敏度温漂
DTR
%/100 lx×°C×FS
>-1
RL=510kW
图1(a)为结构示意图,图1(b)为电路符号。元件引脚有标记的或尺寸较长的为“+”极。
该元件的命名方法分国内与国际两种:
国内命名法:
国际命名法
响应波长代号 :
1—0.4~1.2mm
2—0.2~1.2mm。
2. 光敏Z-元件的伏安特性曲线
图1(d)为光敏Z-元件的的伏安特性曲线。在第一象限,OP段M1区为高阻区(几十千欧~几百千欧)。pf段M2区为负阻区,fm段M3区为低阻区(几十千欧~几百千欧)。其中Vth叫阈值电压,表示在T(℃)时Z-元件两端电压的最大值。Ith叫阈值电流,是Z-元件与Vth对应的电流。Vf叫导通电压,是M3区电压的最小值。If叫导通电流,是对应Vf的电流,也是M3区电流的最小值。在第三象限为反向特性,反向电流IR是在无光照时反向电压VR为25V时测量的,其值(微安级)很小。
3. 光敏Z-元件的分档代号与技术参数
光敏Z-元件的分档代号与技术参数见表1。其分档代号按Vth值的大小排列。型号分二种,按其响应波长分。目前产品波长代号皆为1。
三、 光敏Z-元件的光敏特性
1. 无光照时光敏Z-元件正、反向伏安特性的测量
用遮光罩把光敏Z-元件罩上,即在无光照的情况下,利用图1(c)特性测量电路测量其正、反向伏安特性,测量电路与方法与温敏Z-元件相同 [6] 。
2. 光敏Z-元件正向光敏特性
把Z-元件接在正向特性测量电路上,Z-元件放置在可变照度的光场中。测量时照度由小到大,每次递增100lx,用数字照度计校准,然后测量Z-元件的正向特性,记录不同照度时的Vth、Ith、Vf 。从测试可知,光敏Z-元件的阈值点P(Vth,Ith)随着照度的增加,一直向左偏上方向移动如图2(a),Vth随光照增加而增大,Vf变化较小。Vth、Ith与照度L的关系参看图3。
光敏Z-元件的正向特性还具有光生伏特现象,Z-元件的“正”极即光生伏特的“+”极。目前,光生伏特饱和电动势为200mV左右,短路电流随光照增强而增大。当照度为100lx~5000 lx时短路电流为几微安至几十微安。
3. 光敏Z-元件反向光敏特性
把Z-元件连接在反向特性测量电路中,并把Z-元件置于可变光场中。改变光场照度,用数字照度计校准,测量其反向特性,即反向电压VR与反向电流IR的关系。其特性如图2(b)。可以看出其反向电阻随照度增加而减小,反向电流随光照增强而变大。
四、 光敏Z-元件的应用电路
光敏Z-元件有与温敏Z-元件相似的正、反向伏安特性,温敏Z-元件的应用电路,在理论上都适用于光敏Z-元件。考虑到光敏Z-元件的Vth、Ith、IR有一定的温漂,因此在光开关电路中,应当有抗温度干扰的余量,在模拟应用电路中,应采用具有抗温漂自动补偿电路。
1. M1→M3转换,输出负阶跃开关信号电路[3],[4]
负阶跃开关信号输出电路示于图4(a),工作过程的图解示于图4(b)。在无光照时,OP1为光敏Z-元件M1区特性,阈值点为P1(Vth1,Ith1),E为电源电压,以负载电阻值RL和电源电压E确定的直线(E,E/RL)交电压轴为E,交电流轴为E/RL。Q1为无光照时的工作点其坐标为Q1(VZ1,IZ1),输出电压VO1=VZ1=E-IZ1RL 。我们选择合适的电路参数,使在照度为E2时,阈值点P1移至P2,并刚好在直线(E,E/RL)上,这时Q2与P2重合。光敏Z-元件开始进入了负阻M2区,Q2点在几微秒之内即达到了f点[5],其坐标为f(Vf,If)。此时输出电压为VO2=VOL=Vf,输出端输出一个负阶跃开关信号。为了得到一个负阶跃开关信号,在照度为L2时,工作点Q2与阈值点Vth2重合,电路中各参数必须满足的条件可用下述状态方程描述:
E=Vth2+Ith2RL (1)
其中,负载电阻值RL一般为1~2kW,选择原则是,当在照度L2时,Z-元件工作在M3区,工作点Q2的电压为VZ2=Vf,电流为IZ2=If,电压与电流之积为VfIf=P,并且P≤PM≤50mW。即在功耗不大于50mW的情况下,选择较小的RL,这个开关信号的振幅为DVO:
DVO=Vth2-Vf 《Z-半导体敏感元件原理与应用一(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/168150.html
>-3
RL=Vth/Ith
反向灵敏度
SR
mV/100lx
>800
E=25V
反向灵敏度温漂
DTR
%/100 lx×°C×FS
>-1
RL=510kW
图1(a)为结构示意图,图1(b)为电路符号。元件引脚有标记的或尺寸较长的为“+”极。
该元件的命名方法分国内与国际两种:
国内命名法:
国际命名法
响应波长代号 :
1—0.4~1.2mm
2—0.2~1.2mm。
2. 光敏Z-元件的伏安特性曲线
图1(d)为光敏Z-元件的的伏安特性曲线。在第一象限,OP段M1区为高阻区(几十千欧~几百千欧)。pf段M2区为负阻区,fm段M3区为低阻区(几十千欧~几百千欧)。其中Vth叫阈值电压,表示在T(℃)时Z-元件两端电压的最大值。Ith叫阈值电流,是Z-元件与Vth对应的电流。Vf叫导通电压,是M3区电压的最小值。If叫导通电流,是对应Vf的电流,也是M3区电流的最小值。在第三象限为反向特性,反向电流IR是在无光照时反向电压VR为25V时测量的,其值(微安级)很小。
3. 光敏Z-元件的分档代号与技术参数
光敏Z-元件的分档代号与技术参数见表1。其分档代号按Vth值的大小排列。型号分二种,按其响应波长分。目前产品波长代号皆为1。
三、 光敏Z-元件的光敏特性
1. 无光照时光敏Z-元件正、反向伏安特性的测量
用遮光罩把光敏Z-元件罩上,即在无光照的情况下,利用图1(c)特性测量电路测量其正、反向伏安特性,测量电路与方法与温敏Z-元件相同 [6] 。
2. 光敏Z-元件正向光敏特性
把Z-元件接在正向特性测量电路上,Z-元件放置在可变照度的光场中。测量时照度由小到大,每次递增100lx,用数字照度计校准,然后测量Z-元件的正向特性,记录不同照度时的Vth、Ith、Vf 。从测试可知,光敏Z-元件的阈值点P(Vth,Ith)随着照度的增加,一直向左偏上方向移动如图2(a),Vth随光照增加而增大,Vf变化较小。Vth、Ith与照度L的关系参看图3。
光敏Z-元件的正向特性还具有光生伏特现象,Z-元件的“正”极即光生伏特的“+”极。目前,光生伏特饱和电动势为200mV左右,短路电流随光照增强而增大。当照度为100lx~5000 lx时短路电流为几微安至几十微安。
3. 光敏Z-元件反向光敏特性
把Z-元件连接在反向特性测量电路中,并把Z-元件置于可变光场中。改变光场照度,用数字照度计校准,测量其反向特性,即反向电压VR与反向电流IR的关系。其特性如图2(b)。可以看出其反向电阻随照度增加而减小,反向电流随光照增强而变大。
四、 光敏Z-元件的应用电路
光敏Z-元件有与温敏Z-元件相似的正、反向伏安特性,温敏Z-元件的应用电路,在理论上都适用于光敏Z-元件。考虑到光敏Z-元件的Vth、Ith、IR有一定的温漂,因此在光开关电路中,应当有抗温度干扰的余量,在模拟应用电路中,应采用具有抗温漂自动补偿电路。
1. M1→M3转换,输出负阶跃开关信号电路[3],[4]
负阶跃开关信号输出电路示于图4(a),工作过程的图解示于图4(b)。在无光照时,OP1为光敏Z-元件M1区特性,阈值点为P1(Vth1,Ith1),E为电源电压,以负载电阻值RL和电源电压E确定的直线(E,E/RL)交电压轴为E,交电流轴为E/RL。Q1为无光照时的工作点其坐标为Q1(VZ1,IZ1),输出电压VO1=VZ1=E-IZ1RL 。我们选择合适的电路参数,使在照度为E2时,阈值点P1移至P2,并刚好在直线(E,E/RL)上,这时Q2与P2重合。光敏Z-元件开始进入了负阻M2区,Q2点在几微秒之内即达到了f点[5],其坐标为f(Vf,If)。此时输出电压为VO2=VOL=Vf,输出端输出一个负阶跃开关信号。为了得到一个负阶跃开关信号,在照度为L2时,工作点Q2与阈值点Vth2重合,电路中各参数必须满足的条件可用下述状态方程描述:
E=Vth2+Ith2RL (1)
其中,负载电阻值RL一般为1~2kW,选择原则是,当在照度L2时,Z-元件工作在M3区,工作点Q2的电压为VZ2=Vf,电流为IZ2=If,电压与电流之积为VfIf=P,并且P≤PM≤50mW。即在功耗不大于50mW的情况下,选择较小的RL,这个开关信号的振幅为DVO:
DVO=Vth2-Vf 《Z-半导体敏感元件原理与应用一(第2页)》