增强并口EPP与DSP接口的设计增强并口EPP与DSP接口的设计
H为控制口;37BH为地址读写口;37HC为数据读写口;37DH~37FH可以由用户定义,主要用作16bit与32bitI/O数据读写辅助口。通过对端口基地址+4的I/O读写就可以产生EPP的数据读写周期,对基地址+3的I/O读写就可以产生EPP的地址读写周期。夺址读写周期与数据读写周期的主要区别就是数据读写可以做32bit与16bit的I/O读写,而地址读写周期只能够做8bit的I/O读写(主要因为它没有辅助的端口)。在C语言里面,可以用端口读写函数outportb()、inportb()、outport()、inport()来实现EPP的读写操作,相应的控制信号由计算机自动产生。
二、ADSP2181的IDMA接口
ADSP2181是AD公司制造的ADSP21XX定点DSP系列的一种。它的指令周期为30ns,足以满足信号的实时处理。它内部有16MB的程序存储区(PM)与16MB的数据存储区(DM)。外围接口可以通过IDMA与I/O的方式对存储区进行访问。其IDMA操作的最大优点IDMA的读写操作并不影响ADSP2181程序的运行。但是需要注意的是ADSP2181与外设不能够同时对同一个存储区进行读写,否则,会引起数据紊乱。
IDMA端口主要有以下几个信号线:nIRD(输入、读选通)、nIWR(输入、写选通)、nIS(输入、IDMA选通)、IAL(输入、地址锁存使能)、IDA0~15(地址/数据复用线)、nIACK(输出、DSP响应信号)。
IDAM读写的初始地址与存储区的类型由ADSP2181内部专门的寄存器来控制。每进行一次读写,则该初始地址就自动加1。该寄存器呵以由ADSP2181来设置,也可以由外设电路通过IDMA操作来完成。
IDMA读周期的时序图如图2所示。IDMA写周期的时序图如图3所示。需要注意的是在IDMA读周期中,nIWR为高电平,IAL为低电平,在IDMA写周期时序中,nIRD为高电平,IAL为低电平。
三、接口电路以及整体设计的考虑
图4是我们设计的接口电路框图。并口控制线包括Ndatastb、Naddstb、Ninit;DSP控制线包括nIS、nWRITE、nREAD、IAL。
其中可编程逻辑器件是该电路的核心器件。由于并口只能进行8bit的读写操作,而ADSP2181是16bit的总线,因此若要进行通信,必须设计好组合逻辑。如果采用分立元件,则电路比较复杂,调试起来比较麻烦,并且电路固定好以后,不可能进行其它方式的通信;而采用可编程逻辑器件EPLD,只需要修改器件的逻辑与更改外部引脚的定义就可以实现其它传输协议,如ECP或者其它并口的通信,并且调试起来也比较方便。
我们所选用的可编程逻辑器件是Altera公司的EPM7128S系列。它有2500个可用门,128个宏单元、2个全局时钟,可以完成EPP与ECP电路的逻辑设计。同时支持在线编程,可以很方便地对程序进行下载。该器件用MAXPLUSII系列的软件进行编程,这种软件支持图形、语言等多种设计文件。
由于采用可编程器件,因此电路还可以采用ECP协议。ECP协议支持DMA的传输方式。最主要的是在进行大批量的数据传输的时候可以节省很多系统资源;但在传输速度上并没有大的提高。该协议设计起来比EPP协议复杂很多,需要开发相应的硬件驱动程序。因此在我们设计的电路 《增强并口EPP与DSP接口的设计增强并口EPP与DSP接口的设计(第2页)》
本文链接地址:http://www.oyaya.net/fanwen/view/168688.html
二、ADSP2181的IDMA接口
ADSP2181是AD公司制造的ADSP21XX定点DSP系列的一种。它的指令周期为30ns,足以满足信号的实时处理。它内部有16MB的程序存储区(PM)与16MB的数据存储区(DM)。外围接口可以通过IDMA与I/O的方式对存储区进行访问。其IDMA操作的最大优点IDMA的读写操作并不影响ADSP2181程序的运行。但是需要注意的是ADSP2181与外设不能够同时对同一个存储区进行读写,否则,会引起数据紊乱。
IDMA端口主要有以下几个信号线:nIRD(输入、读选通)、nIWR(输入、写选通)、nIS(输入、IDMA选通)、IAL(输入、地址锁存使能)、IDA0~15(地址/数据复用线)、nIACK(输出、DSP响应信号)。
IDAM读写的初始地址与存储区的类型由ADSP2181内部专门的寄存器来控制。每进行一次读写,则该初始地址就自动加1。该寄存器呵以由ADSP2181来设置,也可以由外设电路通过IDMA操作来完成。
IDMA读周期的时序图如图2所示。IDMA写周期的时序图如图3所示。需要注意的是在IDMA读周期中,nIWR为高电平,IAL为低电平,在IDMA写周期时序中,nIRD为高电平,IAL为低电平。
三、接口电路以及整体设计的考虑
图4是我们设计的接口电路框图。并口控制线包括Ndatastb、Naddstb、Ninit;DSP控制线包括nIS、nWRITE、nREAD、IAL。
其中可编程逻辑器件是该电路的核心器件。由于并口只能进行8bit的读写操作,而ADSP2181是16bit的总线,因此若要进行通信,必须设计好组合逻辑。如果采用分立元件,则电路比较复杂,调试起来比较麻烦,并且电路固定好以后,不可能进行其它方式的通信;而采用可编程逻辑器件EPLD,只需要修改器件的逻辑与更改外部引脚的定义就可以实现其它传输协议,如ECP或者其它并口的通信,并且调试起来也比较方便。
我们所选用的可编程逻辑器件是Altera公司的EPM7128S系列。它有2500个可用门,128个宏单元、2个全局时钟,可以完成EPP与ECP电路的逻辑设计。同时支持在线编程,可以很方便地对程序进行下载。该器件用MAXPLUSII系列的软件进行编程,这种软件支持图形、语言等多种设计文件。
由于采用可编程器件,因此电路还可以采用ECP协议。ECP协议支持DMA的传输方式。最主要的是在进行大批量的数据传输的时候可以节省很多系统资源;但在传输速度上并没有大的提高。该协议设计起来比EPP协议复杂很多,需要开发相应的硬件驱动程序。因此在我们设计的电路 《增强并口EPP与DSP接口的设计增强并口EPP与DSP接口的设计(第2页)》